Global boundedness of solutions to a two-species chemotaxis system

In this paper, we consider the chemotaxis system of two species which are attracted by the same signal substance u t = Δ u - ∇ · ( u χ 1 ( w ) ∇ w ) + μ 1 u ( 1 - u - a 1 v ) , x ∈ Ω , t > 0 , v t = Δ v - ∇ · ( v χ 2 ( w ) ∇ w ) + μ 2 v ( 1 - a 2 u - v ) , x ∈ Ω , t > 0 , w t = Δ w - w + u + v...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Physik Vol. 66; no. 1; pp. 83 - 93
Main Authors Zhang, Qingshan, Li, Yuxiang
Format Journal Article
LanguageEnglish
Published Basel Springer Basel 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we consider the chemotaxis system of two species which are attracted by the same signal substance u t = Δ u - ∇ · ( u χ 1 ( w ) ∇ w ) + μ 1 u ( 1 - u - a 1 v ) , x ∈ Ω , t > 0 , v t = Δ v - ∇ · ( v χ 2 ( w ) ∇ w ) + μ 2 v ( 1 - a 2 u - v ) , x ∈ Ω , t > 0 , w t = Δ w - w + u + v , x ∈ Ω , t > 0 under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ R n . We prove that if the nonnegative initial data ( u 0 , v 0 ) ∈ ( C 0 ( Ω ¯ ) ) 2 and w 0 ∈ W 1 , r ( Ω ) for some r >  n , the system possesses a unique global uniformly bounded solution under some conditions on the chemotaxis sensitivity functions χ 1 ( w ),  χ 2 ( w ) and the logistic growth coefficients  μ 1 ,  μ 2 .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-013-0383-4