Global boundedness of solutions to a two-species chemotaxis system
In this paper, we consider the chemotaxis system of two species which are attracted by the same signal substance u t = Δ u - ∇ · ( u χ 1 ( w ) ∇ w ) + μ 1 u ( 1 - u - a 1 v ) , x ∈ Ω , t > 0 , v t = Δ v - ∇ · ( v χ 2 ( w ) ∇ w ) + μ 2 v ( 1 - a 2 u - v ) , x ∈ Ω , t > 0 , w t = Δ w - w + u + v...
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Physik Vol. 66; no. 1; pp. 83 - 93 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
Springer Basel
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we consider the chemotaxis system of two species which are attracted by the same signal substance
u
t
=
Δ
u
-
∇
·
(
u
χ
1
(
w
)
∇
w
)
+
μ
1
u
(
1
-
u
-
a
1
v
)
,
x
∈
Ω
,
t
>
0
,
v
t
=
Δ
v
-
∇
·
(
v
χ
2
(
w
)
∇
w
)
+
μ
2
v
(
1
-
a
2
u
-
v
)
,
x
∈
Ω
,
t
>
0
,
w
t
=
Δ
w
-
w
+
u
+
v
,
x
∈
Ω
,
t
>
0
under homogeneous Neumann boundary conditions in a smooth bounded domain
Ω
⊂
R
n
. We prove that if the nonnegative initial data
(
u
0
,
v
0
)
∈
(
C
0
(
Ω
¯
)
)
2
and
w
0
∈
W
1
,
r
(
Ω
)
for some
r
>
n
, the system possesses a unique global uniformly bounded solution under some conditions on the chemotaxis sensitivity functions
χ
1
(
w
),
χ
2
(
w
) and the logistic growth coefficients
μ
1
,
μ
2
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-013-0383-4 |