CRIT peptide interacts with factor B and interferes with alternative pathway activation

Complement C2 receptor inhibitor trispanning (CRIT) inhibits the classical pathway (CP) C3 convertase formation by competing with C4b for the binding of C2. The C-terminal 11-amino-acid of the first CRIT-extracellular domain (CRIT-H17) has a strong homology with a sequence in the C4β chain, which is...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 344; no. 1; pp. 308 - 314
Main Authors Hui, Kwok-Min, Magnadóttir, Bergljót, Schifferli, Jürg A., Inal, Jameel M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 26.05.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Complement C2 receptor inhibitor trispanning (CRIT) inhibits the classical pathway (CP) C3 convertase formation by competing with C4b for the binding of C2. The C-terminal 11-amino-acid of the first CRIT-extracellular domain (CRIT-H17) has a strong homology with a sequence in the C4β chain, which is responsible for the binding of C2. Since the CP and alternative pathway (AP) C3 convertases have many functional and structural similarities, we further investigated the effects of CRIT-H17 on the AP. The factor D-mediated cleavage of factor B (FB) was blocked by CRIT-H17. By ELISA and immunoblot, CRIT-H17 was shown to bind FB. CRIT-H17 had no decay activity on the C3bBb complex as compared to decay-accelerating factor. Binding of CRIT-H17 to FB did not interfere with the assembly of C3bB complex. In a haemolytic assay using C2-deficient serum, CRIT-H17 interfered with AP complement activation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2006.03.101