Sequential Element Design With Built-In Soft Error Resilience
This paper presents a built-in soft error resilience (BISER) technique for correcting radiation-induced soft errors in latches and flip-flops. The presented error-correcting latch and flip-flop designs are power efficient, introduce minimal speed penalty, and employ reuse of on-chip scan design-for-...
Saved in:
Published in | IEEE transactions on very large scale integration (VLSI) systems Vol. 14; no. 12; pp. 1368 - 1378 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway, NJ
IEEE
01.12.2006
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a built-in soft error resilience (BISER) technique for correcting radiation-induced soft errors in latches and flip-flops. The presented error-correcting latch and flip-flop designs are power efficient, introduce minimal speed penalty, and employ reuse of on-chip scan design-for-testability and design-for-debug resources to minimize area overheads. Circuit simulations using a sub-90-nm technology show that the presented designs achieve more than a 20-fold reduction in cell-level soft error rate (SER). Fault injection experiments conducted on a microprocessor model further demonstrate that chip-level SER improvement is tunable by selective placement of the presented error-correcting designs. When coupled with error correction code to protect in-pipeline memories, the BISER flip-flop design improves chip-level SER by 10 times over an unprotected pipeline with the flip-flops contributing an extra 7-10.5% in power. When only soft errors in flips-flops are considered, the BISER technique improves chip-level SER by 10 times with an increased power of 10.3%. The error correction mechanism is configurable (i.e., can be turned on or off) which enables the use of the presented techniques for designs that can target multiple applications with a wide range of reliability requirements |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2006.887832 |