Max Weight Learning Algorithms for Scheduling in Unknown Environments

We consider a discrete time queueing system where a controller makes a 2-stage decision every slot. The decision at the first stage reveals a hidden source of randomness with a control-dependent (but unknown) probability distribution. The decision at the second stage generates an attribute vector th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 57; no. 5; pp. 1179 - 1191
Main Authors Neely, M. J., Rager, S. T., La Porta, T. F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider a discrete time queueing system where a controller makes a 2-stage decision every slot. The decision at the first stage reveals a hidden source of randomness with a control-dependent (but unknown) probability distribution. The decision at the second stage generates an attribute vector that depends on this revealed randomness. The goal is to stabilize all queues and optimize a utility function of time average attributes, subject to an additional set of time average constraints. This setting fits a wide class of stochastic optimization problems, including multi-user wireless scheduling with dynamic channel measurement decisions, and wireless multi-hop routing with multi-receiver diversity and opportunistic routing decisions. We develop a simple max-weight algorithm that learns efficient behavior by averaging functionals of previous outcomes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2012.2191874