Sparse Signal Estimation by Maximally Sparse Convex Optimization

This paper addresses the problem of sparsity penalized least squares for applications in sparse signal processing, e.g., sparse deconvolution. This paper aims to induce sparsity more strongly than L1 norm regularization, while avoiding non-convex optimization. For this purpose, this paper describes...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 62; no. 5; pp. 1078 - 1092
Main Authors Selesnick, Ivan W., Bayram, Ilker
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper addresses the problem of sparsity penalized least squares for applications in sparse signal processing, e.g., sparse deconvolution. This paper aims to induce sparsity more strongly than L1 norm regularization, while avoiding non-convex optimization. For this purpose, this paper describes the design and use of non-convex penalty functions (regularizers) constrained so as to ensure the convexity of the total cost function F to be minimized. The method is based on parametric penalty functions, the parameters of which are constrained to ensure convexity of F. It is shown that optimal parameters can be obtained by semidefinite programming (SDP). This maximally sparse convex (MSC) approach yields maximally non-convex sparsity-inducing penalty functions constrained such that the total cost function F is convex. It is demonstrated that iterative MSC (IMSC) can yield solutions substantially more sparse than the standard convex sparsity-inducing approach, i.e., L1 norm minimization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2298839