Hybrid FxRLS-FxNLMS Adaptive Algorithm for Active Noise Control in fMRI Application

A hybrid adaptive algorithm is developed for an active noise control system that leverages the stability of the filtered-input normalized least mean squares (FxNLMS) adaptive algorithm, with the high convergence speed of the filtered-input recursive least squares (FxRLS) adaptive algorithm. This alg...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 19; no. 2; pp. 474 - 480
Main Authors Reddy, R M, Panahi, I M S, Briggs, R
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A hybrid adaptive algorithm is developed for an active noise control system that leverages the stability of the filtered-input normalized least mean squares (FxNLMS) adaptive algorithm, with the high convergence speed of the filtered-input recursive least squares (FxRLS) adaptive algorithm. This algorithm is motivated by practical issues in implementing a real-time active noise control system. It leads to fast initial convergence with low, stable steady-state error while being limited by the computational capability of hardware. It gives better convergence speed than either the FxNLMS or FxRLS algorithm individually, lower residual error, and a lower overall computational complexity than the FxRLS algorithm, when appropriate filter lengths are chosen. Experimental results are presented for the implementation of the hybrid algorithm to cancel functional magnetic resonance imaging (fMRI) acoustic noise in an fMRI test-bed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2010.2042599