Thrust and Thermal Characteristics of Electromagnetic Launcher Based on Permanent Magnet Linear Synchronous Motors

Compared with steam catapult system, electromagnetic launcher (EML) system is highly integrated, and it has high and well matching performance. It will be widely used aircraft carriers ejection, rocket launchers etc in future. Double-side tabular permanent magnet linear synchronous motor (PMLSM) for...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 45; no. 1; pp. 358 - 362
Main Authors KOU BAO QUAN, HUANG XU ZHEN, WU, Hong-Xing, LI, Li-Yi
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.01.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Compared with steam catapult system, electromagnetic launcher (EML) system is highly integrated, and it has high and well matching performance. It will be widely used aircraft carriers ejection, rocket launchers etc in future. Double-side tabular permanent magnet linear synchronous motor (PMLSM) for electromagnetic launcher can meet the requirements of big thrust and high efficiency etc. It can accelerate the launcher at the expected speed in short time. The thrust characteristic of the launcher is essential to the whole electromagnetic launcher system. Large thrust and small thrust ripple are both expected. This paper studies thrust characteristic of different pole arc coefficients, compares the series and parallel magnetic circuit structures, and analyses the method of staggering a certain distance between poles on both sides. In order to achieve the goal of large thrust, the launcher is often designed with high current density. As a result, it is of great loss and has quick temperature rise. This paper establishes numerical model of the two-dimensional (2D) primary transient temperature field. The temperature field of the short-term system is analyzed. The calculated and experimental results of the electromagnetic launchers can provide a basis for optimum design.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2008.2008883