"Quasi-Blind" Calibration of an Array of Acoustic Vector-Sensors That Are Subject to Gain Errors/Mis-Location/Mis-Orientation

This paper advances a new "quasi-blind" calibration algorithm to calibrate a multi-array network (MAN) of acoustic-vector-sensors, whose component-sensors may have non-ideal gain/phase responses, incorrect orientations, and imprecise locations. This proposed calibration is "quasi-blin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 62; no. 9; pp. 2330 - 2344
Main Authors Yang Song, Wong, Kainam Thomas, Fangjiong Chen
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper advances a new "quasi-blind" calibration algorithm to calibrate a multi-array network (MAN) of acoustic-vector-sensors, whose component-sensors may have non-ideal gain/phase responses, incorrect orientations, and imprecise locations. This proposed calibration is "quasi-blind" in not requiring any prior knowledge/estimation of any training signal's arrival-angle. This proposed algorithm is computationally orders-of-magnitude more efficient than maximum-likelihood estimation. These advantages are achieved here by exploiting the acoustic vector-sensor's quintessential characters, to interplay between two complementary approaches of direction-finding: (1) customary interferometry between vector-sensors, and (2) "acoustic particle-velocity-field normalization" DOA-estimation within each individual vector-sensor. Monte Carlo simulations verify the proposed algorithm's efficacy in "quasi-blind" calibration and its aforementioned computational efficacy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2307837