System-level power-performance tradeoffs for reconfigurable computing

In this paper, we propose a configuration-aware data-partitioning approach for reconfigurable computing. We show how the reconfiguration overhead impacts the data-partitioning process. Moreover, we explore the system-level power-performance tradeoffs available when implementing streaming embedded ap...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 14; no. 7; pp. 730 - 739
Main Authors Noguera, J., Badia, R.M.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Piscataway, NJ IEEE 01.07.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose a configuration-aware data-partitioning approach for reconfigurable computing. We show how the reconfiguration overhead impacts the data-partitioning process. Moreover, we explore the system-level power-performance tradeoffs available when implementing streaming embedded applications on fine-grained reconfigurable architectures. For a certain group of streaming applications, we show that an efficient hardware/software partitioning algorithm is required when targeting low power. However, if the application objective is performance, then we propose the use of dynamically reconfigurable architectures. We propose a design methodology that adapts the architecture and algorithms to the application requirements. The methodology has been proven to work on a real research platform based on Xilinx devices. Finally, we have applied our methodology and algorithms to the case study of image sharpening, which is required nowadays in digital cameras and mobile phones
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2006.878343