Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics
A hydrophobic networked PbO2 electrode was deposited on mesh titanium substrate and utilized for the electrochemical elimination towards paracetamol drug. Three dimensional growth mechanism of PbO2 layer provided more loading capacity of active materials and network structure greatly reduced the mas...
Saved in:
Published in | Chemosphere (Oxford) Vol. 193; pp. 89 - 99 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A hydrophobic networked PbO2 electrode was deposited on mesh titanium substrate and utilized for the electrochemical elimination towards paracetamol drug. Three dimensional growth mechanism of PbO2 layer provided more loading capacity of active materials and network structure greatly reduced the mass transfer for the electrochemical degradation. The active electrochemical surface area based on voltammetric charge quantity of networked PbO2 electrode is about 2.1 times for traditional PbO2 electrode while lower charge transfer resistance (6.78 Ω cm2) could be achieved on networked PbO2 electrode. The electrochemical incineration kinetics of paracetamol drug followed a pseudo first-order behavior and the corresponding rate constant were 0.354, 0.658 and 0.880 h−1 for traditional, networked PbO2 and boron doped diamond electrode. Higher electrochemical elimination kinetics could be achieved on networked PbO2 electrode and the performance can be equal to boron doped diamond electrode in result. Based on the quantification of reactive oxidants (hydroxyl radicals), the utilization rate of hydroxyl radicals could reach as high as 90% on networked PbO2 electrode. The enhancement of excellent electrochemical oxidation capacity towards paracetamol drug was related to the properties of higher loading capacity, enhanced mass transfer and hydrophobic surface. The possible degradation mechanism and pathway of paracetamol on networked PbO2 electrode were proposed in details accordingly based on the intermediate products.
[Display omitted]
•Preparation and characterization of networked PbO2 electrode with hydrophobic surface.•Insight in electrochemical elimination kinetics and enhancement mechanisms.•The utilization rate of hydroxyl radicals on networked PbO2 could reach 90%.•Degradation mechanism and pathway of paracetamol molecule. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2017.10.144 |