Scalar transport in compressible flow

Transport of scalar fields in compressible flow is investigated. The effective equations governing the transport at scales large compared to those of the advecting flow v are derived by using multi-scale techniques. Ballistic transport generally takes place when both the solenoidal and the potential...

Full description

Saved in:
Bibliographic Details
Published inPhysica. D Vol. 106; no. 1-2; pp. 148 - 166
Main Authors Vergassola, M., Avellaneda, M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.1997
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transport of scalar fields in compressible flow is investigated. The effective equations governing the transport at scales large compared to those of the advecting flow v are derived by using multi-scale techniques. Ballistic transport generally takes place when both the solenoidal and the potential components of v do not vanish, despite of the fact that v has zero average value. The calculation of the effective ballistic velocity Vb is reduced to the solution of one auxiliary equation. An analytic expression for is derived in some special instances, i.e. flows depending on a single coordinate, random with short correlation times and slightly compressible cellular flow. The effective mean velocity vanishes for velocity fields which are either incompressible or potential and time-independent. For generic compressible flow, the most general conditions ensuring the absence of ballistic transport are isotropy and/or parity invariance. When vanishes (or in the frame of reference comoving with velocity , standard diffusive transport takes place. It is known that diffusion is always enhanced by incompressible flow. On the contrary, we show that diffusion is depleted in the presence of time-independent potential flow. Trapping effects due to potential wells are responsible for this depletion. For time-dependent potential flow or generic compressible flow, transport rates are enhanced or depleted depending on the detailed structure of the velocity field.
ISSN:0167-2789
1872-8022
DOI:10.1016/S0167-2789(97)00022-5