Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications
A general solution method for the oriented growth of large-scale Ni3S2 nanowire arrays has been developed. The controlled oxidation scheme by combining ethylenediamine-chalcogens and hydrazine in alkali solution has been shown to have great advantages for the fabrication of metal chalcogenides with...
Saved in:
Published in | Journal of materials chemistry Vol. 19; no. 39; pp. 7277 - 7283 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A general solution method for the oriented growth of large-scale Ni3S2 nanowire arrays has been developed. The controlled oxidation scheme by combining ethylenediamine-chalcogens and hydrazine in alkali solution has been shown to have great advantages for the fabrication of metal chalcogenides with fewer instrumental limitations. This method is reliable and works in mild template-free conditions for the production of single-crystalline nanowire arrays. It provides a convenient route for the large-scale growth of pure-phase metal chalcogenide nanowire arrays on metal substrates. The electrochemical measurement results of Ni3S2 nanowire arrays for lithium-ion battery electrode applications reveal that they have high reversible lithium storage capacity, long cycle life, good cyclic stability and high charge/discharge rate. With the simplicity of fabrication and good electrochemical performance, Ni3S2 nanowire arrays are promising cathode materials for lithium-ion batteries. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0959-9428 1364-5501 |
DOI: | 10.1039/b909261g |