Reduced graphene oxide/carbon nitride composite sponge for interfacial solar water evaporation and wastewater treatment

Interfacial solar-driven steam generation has been proposed as a cost-effective green sustainable technology to alleviate the freshwater crisis. However, the desire to produce clean water from water sources containing organic contaminants is still remains a challenge due to the limitations of the tr...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 311; p. 137163
Main Authors Zhang, He, Li, Lele, Geng, Le, Tan, Xinyan, Hu, Yaxuan, Mu, Peng, Li, Jian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Interfacial solar-driven steam generation has been proposed as a cost-effective green sustainable technology to alleviate the freshwater crisis. However, the desire to produce clean water from water sources containing organic contaminants is still remains a challenge due to the limitations of the traditional wastewater treatment methods. Here, we constructed a g–C3N4–based composite sponge solar steam generator (rGCPP) by a simple hydrothermal reaction. Benefiting from its low cost and easy preparation, this evaporator can be expected to be a promising candidate for the alleviation of water shortages and water pollution in practical applications. By combination of the solar steam generation and the photocatalysis into the rGCPP-based interfacial solar-driven steam generation system, the resulted rGCPP-based solar steam generator performs outstanding solar absorption of 90.8%, which achieves high evaporation rate of 1.875 kg m−2 h−1 and solar-to-vapor efficiency of 81.07% under 1 sun irradiation. Meanwhile, organic pollutants in the water source can be completely removed by photocatalytic degradation and the degradation rates were measured to be 99.20% for methylene blue and 91.07% for rhodamine B, respectively. Consequently, the as-prepared composite sponge has promising applications in generating clean water and alleviating water pollution. [Display omitted] •The rGCPP-based evaporators were prepared by a facile hydrothermal self-assembly method.•The porous network framework of the rGCPP provides more active catalytic site for photocatalytic and water evaporation.•The rGCPP sponge shows high efficiency for dyes degradation and water evaporation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2022.137163