Adaptive feedback control for nonlinear triangular systems subject to uncertain asymmetric dead-zone input
In this paper, an adaptive control strategy is proposed to investigate the issue of uncertain dead-zone input for nonlinear triangular systems with unknown nonlinearities. The considered system has no precise priori knowledge about the dead-zone feature and growth rate of nonlinearity. Firstly, a dy...
Saved in:
Published in | Control theory and technology Vol. 21; no. 4; pp. 530 - 540 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
Springer Nature B.V School of Control Science and Engineering,Shandong University,Jinan 250061,Shandong,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, an adaptive control strategy is proposed to investigate the issue of uncertain dead-zone input for nonlinear triangular systems with unknown nonlinearities. The considered system has no precise priori knowledge about the dead-zone feature and growth rate of nonlinearity. Firstly, a dynamic gain is introduced to deal with the unknown growth rate, and the dead-zone characteristic is processed by the adaptive estimation approach without constructing the dead-zone inverse. Then, by virtue of hyperbolic functions and sign functions, a new adaptive state feedback controller is proposed to guarantee the global boundedness of all signals in the closed-loop system. Moreover, the uncertain dead-zone input problem for nonlinear upper-triangular systems is solved by the similar control strategy. Finally, two simulation examples are given to verify the effectiveness of the control scheme. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2095-6983 2198-0942 |
DOI: | 10.1007/s11768-023-00140-3 |