General Non-Orthogonal Constrained ICA

Constrained independent component analysis (C-ICA) algorithms have been an effective way to introduce prior information into the ICA framework. The work in this area has focus on adding constraints to the objective function of algorithms that assume an orthogonal demixing matrix. Orthogonality is re...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 62; no. 11; pp. 2778 - 2786
Main Authors Rodriguez, Pedro A., Anderson, Matthew, Xi-Lin Li, Adali, Tulay
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.06.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Constrained independent component analysis (C-ICA) algorithms have been an effective way to introduce prior information into the ICA framework. The work in this area has focus on adding constraints to the objective function of algorithms that assume an orthogonal demixing matrix. Orthogonality is required in order to decouple-isolate-the constraints applied for each individual source. This assumption limits the optimization space and therefore the separation performance of C-ICA algorithms. We generalize the existing C-ICA framework by using a novel decoupling method that preserves the larger optimization space for the demixing matrix. In addition, this framework allows for the constraining of either the sources or the mixing coefficients. A constrained version of the extended Infomax algorithm is used as an example to show the benefits obtained from the non-orthogonal constrained framework we introduce.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2318136