Adaptive incremental stippling for sample distribution in spatially adaptive PIV image analysis

Adaptive sampling strategies in PIV have been shown to efficiently combine the need for limited user-dependence with increased performances in terms of spatial resolution and computational effort, thus rendering such approaches of great interest. The allocation of correlation windows across the spat...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 30; no. 6; pp. 65301 - 65312
Main Authors Edwards, M, Theunissen, R
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Adaptive sampling strategies in PIV have been shown to efficiently combine the need for limited user-dependence with increased performances in terms of spatial resolution and computational effort, thus rendering such approaches of great interest. The allocation of correlation windows across the spatial image domain is dependent on the interpretation of an underlying objective function, and the distribution of windows accordingly. It is important that such allocation is computationally efficient, robust to changing objective functions and conditions, and conducive to high quality sampling. In this paper, an alternative sample distribution method, based on adaptive incremental stippling, is presented and shown to combine the speed of PDF-based methods with the quality of 'ideal' spring-force methods. Case-dependent parameter tuning is no longer necessary, thus improving robustness. In addition, an algorithm to adaptively size initial correlation windows is proposed to further minimise user dependence.
Bibliography:MST-108242.R1
ISSN:0957-0233
1361-6501
DOI:10.1088/1361-6501/ab10b9