Learning to Distribute Vocabulary Indexing for Scalable Visual Search
In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is...
Saved in:
Published in | IEEE transactions on multimedia Vol. 15; no. 1; pp. 153 - 166 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.01.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1520-9210 1941-0077 |
DOI | 10.1109/TMM.2012.2225035 |
Cover
Loading…
Abstract | In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is extremely hard to scale up to millions or even billions of images. In this paper, we propose to parallelize the near duplicate visual search architecture to index millions of images over multiple servers, including the distribution of both visual vocabulary and the corresponding indexing structure. We optimize the distribution of vocabulary indexing from a machine learning perspective, which provides a "memory light" search paradigm that leverages the computational power across multiple servers to reduce the search latency. Especially, our solution addresses two essential issues: "What to distribute" and "How to distribute". "What to distribute" is addressed by a "lossy" vocabulary Boosting, which discards both frequent and indiscriminating words prior to distribution. "How to distribute" is addressed by learning an optimal distribution function, which maximizes the uniformity of assigning the words of a given query to multiple servers. We validate the distributed vocabulary indexing scheme in a real world location search system over 10 million landmark images. Comparing to the state-of-the-art alternatives of single-server search [5], [6], [16] and distributed search [23], our scheme has yielded a significant gain of about 200% speedup at comparable precision by distributing only 5% words. We also report excellent robustness even when partial servers crash. |
---|---|
AbstractList | In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is extremely hard to scale up to millions or even billions of images. In this paper, we propose to parallelize the near duplicate visual search architecture to index millions of images over multiple servers, including the distribution of both visual vocabulary and the corresponding indexing structure. We optimize the distribution of vocabulary indexing from a machine learning perspective, which provides a "memory light" search paradigm that leverages the computational power across multiple servers to reduce the search latency. Especially, our solution addresses two essential issues: "What to distribute" and "How to distribute". "What to distribute" is addressed by a "lossy" vocabulary Boosting, which discards both frequent and indiscriminating words prior to distribution. "How to distribute" is addressed by learning an optimal distribution function, which maximizes the uniformity of assigning the words of a given query to multiple servers. We validate the distributed vocabulary indexing scheme in a real world location search system over 10 million landmark images. Comparing to the state-of-the-art alternatives of single-server search [5], [6], [16] and distributed search [23], our scheme has yielded a significant gain of about 200% speedup at comparable precision by distributing only 5% words. We also report excellent robustness even when partial servers crash. In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is extremely hard to scale up to millions or even billions of images. In this paper, we propose to parallelize the near duplicate visual search architecture to index millions of images over multiple servers, including the distribution of both visual vocabulary and the corresponding indexing structure. We optimize the distribution of vocabulary indexing from a machine learning perspective, which provides a "memory light" search paradigm that leverages the computational power across multiple servers to reduce the search latency. Especially, our solution addresses two essential issues: "What to distribute" and "How to distribute". "What to distribute" is addressed by a "lossy" vocabulary Boosting, which discards both frequent and indiscriminating words prior to distribution. "How to distribute" is addressed by learning an optimal distribution function, which maximizes the uniformity of assigning the words of a given query to multiple servers. We validate the distributed vocabulary indexing scheme in a real world location search system over 10 million landmark images. Comparing to the state-of-the-art alternatives of single-server search [Ref 5] , [Ref 6], [Ref 16] and distributed search [Ref 23], our scheme has yielded a significant gain of about 200% speedup at comparable precision by distributing only 5% words. We also report excellent robustness even when partial servers crash. In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is extremely hard to scale up to millions or even billions of images. In this paper, we propose to parallelize the near duplicate visual search architecture to index millions of images over multiple servers, including the distribution of both visual vocabulary and the corresponding indexing structure. We optimize the distribution of vocabulary indexing from a machine learning perspective, which provides a "memory light" search paradigm that leverages the computational power across multiple servers to reduce the search latency. Especially, our solution addresses two essential issues: "What to distribute" and "How to distribute". "What to distribute" is addressed by a "lossy" vocabulary Boosting, which discards both frequent and indiscriminating words prior to distribution. "How to distribute" is addressed by learning an optimal distribution function, which maximizes the uniformity of assigning the words of a given query to multiple servers. We validate the distributed vocabulary indexing scheme in a real world location search system over 10 million landmark images. Comparing to the state-of-the-art alternatives of single-server search , , and distributed search , our scheme has yielded a significant gain of about 200% speedup at comparable precision by distributing only 5% words. We also report excellent robustness even when partial servers crash. |
Author | Ling-Yu Duan Wen Gao Jie Chen Hongxun Yao Rongrong Ji Lexing Xie |
Author_xml | – sequence: 1 givenname: Rongrong surname: Ji fullname: Ji, Rongrong – sequence: 2 givenname: Ling-Yu surname: Duan fullname: Duan, Ling-Yu – sequence: 3 givenname: Jie surname: Chen fullname: Chen, Jie – sequence: 4 givenname: Lexing surname: Xie fullname: Xie, Lexing – sequence: 5 givenname: Hongxun surname: Yao fullname: Yao, Hongxun – sequence: 6 givenname: Wen surname: Gao fullname: Gao, Wen |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27073941$$DView record in Pascal Francis |
BookMark | eNp90cFrFDEUBvAgFWyrd8HLgAheZn0vmSQzR6lVC1s8tHoNb7JvNGWa1GQG9L83y64eevCUBH5fyMt3Jk5iiizES4QNIgzvbq-vNxJQbqSUGpR-Ik5x6LAFsPak7rWEdpAIz8RZKXcA2Gmwp-Jyy5RjiN-bJTUfQllyGNeFm2_J07jOlH83V3HHv_ZiSrm58TTTOFcQykpzc1Pj_sdz8XSiufCL43ouvn68vL343G6_fLq6eL9tvdLd0ioaYGc8wqR7Ju-x8wC9MR4sEmK3M9yzHBVTPY0K0fR6Mn1v2HbeWlLn4u3h3oecfq5cFncfiud5pshpLQ5lr6yUXa8rff2I3qU1x_q6qlT9mcFIW9Wbo6JSJ5syRR-Ke8jhvo7upAW7t9WZg_M5lZJ5cj4stIQUl0xhdghu34KrLbh9C-7YQg3Co-Dfu_8TeXWIBGb-x41SqJVSfwAxwZHE |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_1109_TIP_2014_2372618 crossref_primary_10_1016_j_future_2018_12_039 crossref_primary_10_1016_j_neucom_2014_02_040 crossref_primary_10_1016_j_jvcir_2015_06_003 crossref_primary_10_1016_j_neucom_2016_02_082 crossref_primary_10_1007_s00521_021_06249_3 crossref_primary_10_1016_j_neucom_2015_02_083 crossref_primary_10_1007_s11042_014_2138_4 crossref_primary_10_1016_j_neucom_2014_12_123 crossref_primary_10_1109_TMM_2017_2655422 crossref_primary_10_1016_j_ins_2014_12_022 crossref_primary_10_1016_j_neucom_2014_06_090 crossref_primary_10_1016_j_neucom_2016_01_112 crossref_primary_10_1007_s13735_017_0140_0 crossref_primary_10_1109_MMUL_2013_65 crossref_primary_10_1016_j_sigpro_2016_05_021 crossref_primary_10_1016_j_neucom_2014_12_081 crossref_primary_10_1016_j_image_2015_01_007 crossref_primary_10_3233_JIFS_169038 crossref_primary_10_1016_j_media_2015_12_006 crossref_primary_10_1109_TMM_2015_2405350 crossref_primary_10_1007_s11042_014_2318_2 crossref_primary_10_1016_j_neucom_2014_11_092 crossref_primary_10_1016_j_sigpro_2014_10_021 crossref_primary_10_1016_j_neucom_2013_06_003 crossref_primary_10_1007_s11042_019_7725_y crossref_primary_10_1109_TIP_2014_2303650 crossref_primary_10_1016_j_ins_2015_04_034 crossref_primary_10_1109_TMM_2015_2480228 crossref_primary_10_1109_TCSVT_2014_2355711 crossref_primary_10_1007_s00530_014_0407_8 crossref_primary_10_1371_journal_pone_0124383 crossref_primary_10_1371_journal_pone_0110622 crossref_primary_10_1016_j_neucom_2015_09_066 crossref_primary_10_1371_journal_pone_0133648 crossref_primary_10_1371_journal_pone_0113953 crossref_primary_10_1109_TIE_2014_2336602 crossref_primary_10_1109_MMUL_2014_2 crossref_primary_10_1109_TMM_2016_2581580 crossref_primary_10_1007_s11042_018_6427_1 crossref_primary_10_1109_TMM_2017_2788205 crossref_primary_10_1016_j_neucom_2015_09_137 crossref_primary_10_1016_j_sigpro_2014_08_029 crossref_primary_10_1016_j_jvcir_2015_06_016 crossref_primary_10_1109_TMM_2016_2645404 crossref_primary_10_1007_s00530_014_0364_2 crossref_primary_10_1109_TMI_2014_2366726 crossref_primary_10_1145_3065951 crossref_primary_10_1145_2963105 crossref_primary_10_1007_s11235_014_9944_x crossref_primary_10_1109_LRA_2017_2650153 crossref_primary_10_1371_journal_pone_0108334 crossref_primary_10_1007_s11704_016_5453_2 crossref_primary_10_1016_j_neucom_2015_11_131 crossref_primary_10_1007_s11042_013_1470_4 crossref_primary_10_1016_j_neucom_2014_06_086 crossref_primary_10_1016_j_neucom_2014_06_087 crossref_primary_10_1016_j_neucom_2015_01_041 crossref_primary_10_1016_j_neucom_2014_06_083 crossref_primary_10_1016_j_neucom_2020_07_139 crossref_primary_10_1109_TKDE_2015_2505284 crossref_primary_10_1109_MMUL_2013_31 crossref_primary_10_1371_journal_pone_0131721 crossref_primary_10_1016_j_neucom_2016_03_094 |
Cites_doi | 10.1109/ICCV.2009.5459466 10.1109/ICCV.2005.66 10.1145/1148170.1148232 10.1145/1658377.1658378 10.1162/jmlr.2003.3.4-5.993 10.1016/0306-4573(88)90021-0 10.1145/1290082.1290111 10.1109/DCC.2009.33 10.1109/TPAMI.2009.132 10.1007/s11263-005-3848-x 10.1145/1282280.1282352 10.1023/A:1007617005950 10.1145/2072298.2072372 10.1109/ICCV.2005.146 10.1109/CVPR.2010.5540118 10.1109/ICCV.2003.1238663 10.1145/96749.98247 10.1145/1277741.1277776 10.1145/1321440.1321579 10.1023/B:VISI.0000029664.99615.94 10.1109/CVPR.2006.264 10.1109/CVPR.2010.5540039 10.1007/s11263-011-0472-9 10.1007/s10791-006-9014-4 10.1109/CVPR.2009.5206733 10.1109/MM.2003.1196112 10.1109/TPAMI.2008.138 10.1002/(SICI)1097-4571(199408)45:7<443::AID-ASI1>3.0.CO;2-O 10.1109/SPIRE.2001.989733 10.1145/1743384.1743405 10.1109/CVPR.2007.383172 10.1145/1460412.1460428 10.4108/infoscale.2007.227 10.1145/1183614.1183644 10.1109/CVPR.2007.383150 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TMM.2012.2225035 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Applied Sciences |
EISSN | 1941-0077 |
EndPage | 166 |
ExternalDocumentID | 2844020781 27073941 10_1109_TMM_2012_2225035 6331533 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION ABTAH IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c354t-3a90d6c10f58eacc14c00866c071a114d6e8e2b3eaa11b311685f6886e74c77a3 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Fri Jul 11 05:17:43 EDT 2025 Mon Jun 30 06:29:15 EDT 2025 Wed Apr 02 07:23:37 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Tue Jul 01 00:53:21 EDT 2025 Tue Aug 26 16:42:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Distributed search Computer vision Vocabulary Parallel algorithm Prior distribution Inversion Information retrieval Distributed computing Delay Multiple image Aggregate model Bag of words Visual search Supervised learning Classification visual vocabulary Distribution function inverted indexing Robustness Localization Artificial intelligence parallel computing Uniformity Indexing |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-3a90d6c10f58eacc14c00866c071a114d6e8e2b3eaa11b311685f6886e74c77a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1239419627 |
PQPubID | 75737 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1239419627 pascalfrancis_primary_27073941 proquest_miscellaneous_1283722485 crossref_citationtrail_10_1109_TMM_2012_2225035 ieee_primary_6331533 crossref_primary_10_1109_TMM_2012_2225035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-Jan. 2013-01-00 2013 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: Piscataway |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2013 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref37 ref15 ref36 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 jeong (ref20) 1995; 6 moosmann (ref28) 2006 ji (ref31) 2009 jegou (ref12) 2008 ref24 ref23 ref26 ref42 ref41 ref22 ref21 mairal (ref29) 2008 ref27 weiss (ref18) 2008 ref8 ref7 kulis (ref25) 1999 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref11 doi: 10.1109/ICCV.2009.5459466 – ident: ref13 doi: 10.1109/ICCV.2005.66 – ident: ref22 doi: 10.1145/1148170.1148232 – year: 2008 ident: ref18 article-title: Spectral hashing publication-title: Advances in Neural Inf Process Syst – ident: ref37 doi: 10.1145/1658377.1658378 – ident: ref10 doi: 10.1162/jmlr.2003.3.4-5.993 – ident: ref8 doi: 10.1016/0306-4573(88)90021-0 – ident: ref14 doi: 10.1145/1290082.1290111 – ident: ref16 doi: 10.1109/DCC.2009.33 – ident: ref27 doi: 10.1109/TPAMI.2009.132 – ident: ref3 doi: 10.1007/s11263-005-3848-x – ident: ref26 doi: 10.1145/1282280.1282352 – ident: ref9 doi: 10.1023/A:1007617005950 – year: 1999 ident: ref25 article-title: Kernelized locality-sensitive hashing for scalable image search publication-title: Proc Int Conf Computer Vision – ident: ref33 doi: 10.1145/2072298.2072372 – ident: ref2 doi: 10.1109/ICCV.2005.146 – ident: ref32 doi: 10.1109/CVPR.2010.5540118 – ident: ref4 doi: 10.1109/ICCV.2003.1238663 – ident: ref21 doi: 10.1145/96749.98247 – year: 2008 ident: ref12 article-title: Hamming embedding and weak geometric consistency for large scale image search publication-title: Proc Eur Conf Computer Vision – ident: ref39 doi: 10.1145/1277741.1277776 – ident: ref41 doi: 10.1145/1321440.1321579 – ident: ref1 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref5 doi: 10.1109/CVPR.2006.264 – ident: ref15 doi: 10.1109/CVPR.2010.5540039 – ident: ref34 doi: 10.1007/s11263-011-0472-9 – ident: ref40 doi: 10.1007/s10791-006-9014-4 – ident: ref17 doi: 10.1109/CVPR.2009.5206733 – ident: ref24 doi: 10.1109/MM.2003.1196112 – ident: ref30 doi: 10.1109/TPAMI.2008.138 – year: 2008 ident: ref29 article-title: Supervised dictionary learning publication-title: Adv Neural Inf Process Syst – ident: ref19 doi: 10.1002/(SICI)1097-4571(199408)45:7<443::AID-ASI1>3.0.CO;2-O – year: 2006 ident: ref28 article-title: Fast discriminative visual codebooks using randomized clustering forests publication-title: Adv Neural Inf Process Syst – ident: ref23 doi: 10.1109/SPIRE.2001.989733 – ident: ref35 doi: 10.1145/1743384.1743405 – ident: ref6 doi: 10.1109/CVPR.2007.383172 – ident: ref36 doi: 10.1145/1460412.1460428 – volume: 6 start-page: 142 year: 1995 ident: ref20 article-title: Inverted file partitioning schemes in multiple disk systems publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2009 ident: ref31 article-title: Vocabulary tree incremental indexing for scalable location recognition publication-title: Proc ICME – ident: ref42 doi: 10.4108/infoscale.2007.227 – ident: ref38 doi: 10.1145/1183614.1183644 – ident: ref7 doi: 10.1109/CVPR.2007.383150 |
SSID | ssj0014507 |
Score | 2.3631988 |
Snippet | In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 153 |
SubjectTerms | Applied sciences Artificial intelligence Computation Computer architecture Computer science; control theory; systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Distributed search Exact sciences and technology Feature extraction Indexing inverted indexing Learning Memory organisation. Data processing Mobile communication parallel computing Pattern recognition. Digital image processing. Computational geometry Reproduction Searching Servers Software Studies Visual visual search visual vocabulary Visualization Vocabulary |
Title | Learning to Distribute Vocabulary Indexing for Scalable Visual Search |
URI | https://ieeexplore.ieee.org/document/6331533 https://www.proquest.com/docview/1239419627 https://www.proquest.com/docview/1283722485 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJziUZ9WUBQWJSyWyaye2kxwRD20rbU-AuEW241RVV7uomxzg1zPjPEoBVb0l8iROPLZnxvP4AE5ZbHDbNzxyqBxEQgkVGSklHQkY61JeSk35zrPvanorvt3L-zU4G3JhnHM--MyN6dL78sulbeiobKKShNSTdVhHw63N1Ro8BkL61GgURyzK0Y7pXZIsn9zMZhTDFY_JtmEe2O2PCPKYKhQRqVc4KFWLZvFmY_bS5nobZv13tkEmv8ZNbcb26VUJx__9kR340Kmd4Xk7T3ZhzS32YLuHdAi7Fb4HWy_qE-7DVVd99UdYL8NLKrFL6FguvEMBaCh-9TH8StUWiQKVX3yNnlMqVnj3c9Vgd20s8wHcXl_dXEyjDnchsokUdZTonJXKclbJDPdly4Uly0dZVEc02k-lcpmLTeI03pmEc5XJSmWZcqmwaaqTj7CxWC7cJwgNk1msK2VtlgpnmInTSiRKW5PZUlZ5AJOeFYXtipITNsa88MYJywtkXkHMKzrmBfBleOKhLcjxD9p9GvuBrhv2AI7_4vbQHqfktxQ8gFHP_qJb0quCE4g8J6yiAE6GZlyM5GHRC7dsiAbt_ZiqxH1-v-tD2Iw9ngad4Yxgo_7duCPUampz7KfzMwtw8dk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remh7gBZaNUAhlXqp1Ozaie0kR9SCFko4LYhbZDtOVRXtVt3kAL-eGedBX0LcEnkSJx7bM-N5fAAfWGxw2zc8cqgcREIJFRkpJR0JGOtSXklN-c7FuZpdiNMrebUGn8ZcGOecDz5zE7r0vvxqaVs6KpuqJCH15Ak8RbkveZetNfoMhPTJ0SiQWJSjJTM4JVk-nRcFRXHFE7JumId2uxdCHlWFYiL1Coel7vAs_tmavbw53oRi-NIuzOTHpG3MxN7-VcTxsb_yEjZ6xTM87GbKK1hziy3YHEAdwn6Nb8GL3yoUbsNRX3_1W9gswy9UZJfwsVx4iSLQUATrTXhC9RaJAtVffI2-pmSs8PL7qsXuumjm13BxfDT_PIt65IXIJlI0UaJzVinLWS0z3JktF5ZsH2VRIdFoQVXKZS42idN4ZxLOVSZrlWXKpcKmqU7ewPpiuXBvITRMZrGulbVZKpxhJk5rkShtTWYrWecBTAdWlLYvS07oGNelN09YXiLzSmJe2TMvgI_jEz-7khwP0G7T2I90_bAHsP8Ht8f2OCXPpeAB7A3sL_tFvSo5wchzQisK4P3YjMuRfCx64ZYt0aDFH1OduJ3_d30Az2bz4qw8Ozn_ugvPY4-uQSc6e7De_GrdO9RxGrPvp_Ydzd31Ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Distribute+Vocabulary+Indexing+for+Scalable+Visual+Search&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=RONGRONG+JI&rft.au=DUAN%2C+Ling-Yu&rft.au=JIE+CHEN&rft.au=LEXING+XIE&rft.date=2013&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1520-9210&rft.volume=15&rft.issue=1&rft.spage=153&rft.epage=166&rft_id=info:doi/10.1109%2FTMM.2012.2225035&rft.externalDBID=n%2Fa&rft.externalDocID=27073941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |