Learning to Distribute Vocabulary Indexing for Scalable Visual Search

In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 15; no. 1; pp. 153 - 166
Main Authors Ji, Rongrong, Duan, Ling-Yu, Chen, Jie, Xie, Lexing, Yao, Hongxun, Gao, Wen
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1520-9210
1941-0077
DOI10.1109/TMM.2012.2225035

Cover

Loading…
Abstract In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is extremely hard to scale up to millions or even billions of images. In this paper, we propose to parallelize the near duplicate visual search architecture to index millions of images over multiple servers, including the distribution of both visual vocabulary and the corresponding indexing structure. We optimize the distribution of vocabulary indexing from a machine learning perspective, which provides a "memory light" search paradigm that leverages the computational power across multiple servers to reduce the search latency. Especially, our solution addresses two essential issues: "What to distribute" and "How to distribute". "What to distribute" is addressed by a "lossy" vocabulary Boosting, which discards both frequent and indiscriminating words prior to distribution. "How to distribute" is addressed by learning an optimal distribution function, which maximizes the uniformity of assigning the words of a given query to multiple servers. We validate the distributed vocabulary indexing scheme in a real world location search system over 10 million landmark images. Comparing to the state-of-the-art alternatives of single-server search [5], [6], [16] and distributed search [23], our scheme has yielded a significant gain of about 200% speedup at comparable precision by distributing only 5% words. We also report excellent robustness even when partial servers crash.
AbstractList In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is extremely hard to scale up to millions or even billions of images. In this paper, we propose to parallelize the near duplicate visual search architecture to index millions of images over multiple servers, including the distribution of both visual vocabulary and the corresponding indexing structure. We optimize the distribution of vocabulary indexing from a machine learning perspective, which provides a "memory light" search paradigm that leverages the computational power across multiple servers to reduce the search latency. Especially, our solution addresses two essential issues: "What to distribute" and "How to distribute". "What to distribute" is addressed by a "lossy" vocabulary Boosting, which discards both frequent and indiscriminating words prior to distribution. "How to distribute" is addressed by learning an optimal distribution function, which maximizes the uniformity of assigning the words of a given query to multiple servers. We validate the distributed vocabulary indexing scheme in a real world location search system over 10 million landmark images. Comparing to the state-of-the-art alternatives of single-server search [5], [6], [16] and distributed search [23], our scheme has yielded a significant gain of about 200% speedup at comparable precision by distributing only 5% words. We also report excellent robustness even when partial servers crash.
In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is extremely hard to scale up to millions or even billions of images. In this paper, we propose to parallelize the near duplicate visual search architecture to index millions of images over multiple servers, including the distribution of both visual vocabulary and the corresponding indexing structure. We optimize the distribution of vocabulary indexing from a machine learning perspective, which provides a "memory light" search paradigm that leverages the computational power across multiple servers to reduce the search latency. Especially, our solution addresses two essential issues: "What to distribute" and "How to distribute". "What to distribute" is addressed by a "lossy" vocabulary Boosting, which discards both frequent and indiscriminating words prior to distribution. "How to distribute" is addressed by learning an optimal distribution function, which maximizes the uniformity of assigning the words of a given query to multiple servers. We validate the distributed vocabulary indexing scheme in a real world location search system over 10 million landmark images. Comparing to the state-of-the-art alternatives of single-server search [Ref 5] , [Ref 6], [Ref 16] and distributed search [Ref 23], our scheme has yielded a significant gain of about 200% speedup at comparable precision by distributing only 5% words. We also report excellent robustness even when partial servers crash.
In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is extremely hard to scale up to millions or even billions of images. In this paper, we propose to parallelize the near duplicate visual search architecture to index millions of images over multiple servers, including the distribution of both visual vocabulary and the corresponding indexing structure. We optimize the distribution of vocabulary indexing from a machine learning perspective, which provides a "memory light" search paradigm that leverages the computational power across multiple servers to reduce the search latency. Especially, our solution addresses two essential issues: "What to distribute" and "How to distribute". "What to distribute" is addressed by a "lossy" vocabulary Boosting, which discards both frequent and indiscriminating words prior to distribution. "How to distribute" is addressed by learning an optimal distribution function, which maximizes the uniformity of assigning the words of a given query to multiple servers. We validate the distributed vocabulary indexing scheme in a real world location search system over 10 million landmark images. Comparing to the state-of-the-art alternatives of single-server search , , and distributed search , our scheme has yielded a significant gain of about 200% speedup at comparable precision by distributing only 5% words. We also report excellent robustness even when partial servers crash.
Author Ling-Yu Duan
Wen Gao
Jie Chen
Hongxun Yao
Rongrong Ji
Lexing Xie
Author_xml – sequence: 1
  givenname: Rongrong
  surname: Ji
  fullname: Ji, Rongrong
– sequence: 2
  givenname: Ling-Yu
  surname: Duan
  fullname: Duan, Ling-Yu
– sequence: 3
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
– sequence: 4
  givenname: Lexing
  surname: Xie
  fullname: Xie, Lexing
– sequence: 5
  givenname: Hongxun
  surname: Yao
  fullname: Yao, Hongxun
– sequence: 6
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27073941$$DView record in Pascal Francis
BookMark eNp90cFrFDEUBvAgFWyrd8HLgAheZn0vmSQzR6lVC1s8tHoNb7JvNGWa1GQG9L83y64eevCUBH5fyMt3Jk5iiizES4QNIgzvbq-vNxJQbqSUGpR-Ik5x6LAFsPak7rWEdpAIz8RZKXcA2Gmwp-Jyy5RjiN-bJTUfQllyGNeFm2_J07jOlH83V3HHv_ZiSrm58TTTOFcQykpzc1Pj_sdz8XSiufCL43ouvn68vL343G6_fLq6eL9tvdLd0ioaYGc8wqR7Ju-x8wC9MR4sEmK3M9yzHBVTPY0K0fR6Mn1v2HbeWlLn4u3h3oecfq5cFncfiud5pshpLQ5lr6yUXa8rff2I3qU1x_q6qlT9mcFIW9Wbo6JSJ5syRR-Ke8jhvo7upAW7t9WZg_M5lZJ5cj4stIQUl0xhdghu34KrLbh9C-7YQg3Co-Dfu_8TeXWIBGb-x41SqJVSfwAxwZHE
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_TIP_2014_2372618
crossref_primary_10_1016_j_future_2018_12_039
crossref_primary_10_1016_j_neucom_2014_02_040
crossref_primary_10_1016_j_jvcir_2015_06_003
crossref_primary_10_1016_j_neucom_2016_02_082
crossref_primary_10_1007_s00521_021_06249_3
crossref_primary_10_1016_j_neucom_2015_02_083
crossref_primary_10_1007_s11042_014_2138_4
crossref_primary_10_1016_j_neucom_2014_12_123
crossref_primary_10_1109_TMM_2017_2655422
crossref_primary_10_1016_j_ins_2014_12_022
crossref_primary_10_1016_j_neucom_2014_06_090
crossref_primary_10_1016_j_neucom_2016_01_112
crossref_primary_10_1007_s13735_017_0140_0
crossref_primary_10_1109_MMUL_2013_65
crossref_primary_10_1016_j_sigpro_2016_05_021
crossref_primary_10_1016_j_neucom_2014_12_081
crossref_primary_10_1016_j_image_2015_01_007
crossref_primary_10_3233_JIFS_169038
crossref_primary_10_1016_j_media_2015_12_006
crossref_primary_10_1109_TMM_2015_2405350
crossref_primary_10_1007_s11042_014_2318_2
crossref_primary_10_1016_j_neucom_2014_11_092
crossref_primary_10_1016_j_sigpro_2014_10_021
crossref_primary_10_1016_j_neucom_2013_06_003
crossref_primary_10_1007_s11042_019_7725_y
crossref_primary_10_1109_TIP_2014_2303650
crossref_primary_10_1016_j_ins_2015_04_034
crossref_primary_10_1109_TMM_2015_2480228
crossref_primary_10_1109_TCSVT_2014_2355711
crossref_primary_10_1007_s00530_014_0407_8
crossref_primary_10_1371_journal_pone_0124383
crossref_primary_10_1371_journal_pone_0110622
crossref_primary_10_1016_j_neucom_2015_09_066
crossref_primary_10_1371_journal_pone_0133648
crossref_primary_10_1371_journal_pone_0113953
crossref_primary_10_1109_TIE_2014_2336602
crossref_primary_10_1109_MMUL_2014_2
crossref_primary_10_1109_TMM_2016_2581580
crossref_primary_10_1007_s11042_018_6427_1
crossref_primary_10_1109_TMM_2017_2788205
crossref_primary_10_1016_j_neucom_2015_09_137
crossref_primary_10_1016_j_sigpro_2014_08_029
crossref_primary_10_1016_j_jvcir_2015_06_016
crossref_primary_10_1109_TMM_2016_2645404
crossref_primary_10_1007_s00530_014_0364_2
crossref_primary_10_1109_TMI_2014_2366726
crossref_primary_10_1145_3065951
crossref_primary_10_1145_2963105
crossref_primary_10_1007_s11235_014_9944_x
crossref_primary_10_1109_LRA_2017_2650153
crossref_primary_10_1371_journal_pone_0108334
crossref_primary_10_1007_s11704_016_5453_2
crossref_primary_10_1016_j_neucom_2015_11_131
crossref_primary_10_1007_s11042_013_1470_4
crossref_primary_10_1016_j_neucom_2014_06_086
crossref_primary_10_1016_j_neucom_2014_06_087
crossref_primary_10_1016_j_neucom_2015_01_041
crossref_primary_10_1016_j_neucom_2014_06_083
crossref_primary_10_1016_j_neucom_2020_07_139
crossref_primary_10_1109_TKDE_2015_2505284
crossref_primary_10_1109_MMUL_2013_31
crossref_primary_10_1371_journal_pone_0131721
crossref_primary_10_1016_j_neucom_2016_03_094
Cites_doi 10.1109/ICCV.2009.5459466
10.1109/ICCV.2005.66
10.1145/1148170.1148232
10.1145/1658377.1658378
10.1162/jmlr.2003.3.4-5.993
10.1016/0306-4573(88)90021-0
10.1145/1290082.1290111
10.1109/DCC.2009.33
10.1109/TPAMI.2009.132
10.1007/s11263-005-3848-x
10.1145/1282280.1282352
10.1023/A:1007617005950
10.1145/2072298.2072372
10.1109/ICCV.2005.146
10.1109/CVPR.2010.5540118
10.1109/ICCV.2003.1238663
10.1145/96749.98247
10.1145/1277741.1277776
10.1145/1321440.1321579
10.1023/B:VISI.0000029664.99615.94
10.1109/CVPR.2006.264
10.1109/CVPR.2010.5540039
10.1007/s11263-011-0472-9
10.1007/s10791-006-9014-4
10.1109/CVPR.2009.5206733
10.1109/MM.2003.1196112
10.1109/TPAMI.2008.138
10.1002/(SICI)1097-4571(199408)45:7<443::AID-ASI1>3.0.CO;2-O
10.1109/SPIRE.2001.989733
10.1145/1743384.1743405
10.1109/CVPR.2007.383172
10.1145/1460412.1460428
10.4108/infoscale.2007.227
10.1145/1183614.1183644
10.1109/CVPR.2007.383150
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TMM.2012.2225035
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0077
EndPage 166
ExternalDocumentID 2844020781
27073941
10_1109_TMM_2012_2225035
6331533
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
ABTAH
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c354t-3a90d6c10f58eacc14c00866c071a114d6e8e2b3eaa11b311685f6886e74c77a3
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Fri Jul 11 05:17:43 EDT 2025
Mon Jun 30 06:29:15 EDT 2025
Wed Apr 02 07:23:37 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Tue Jul 01 00:53:21 EDT 2025
Tue Aug 26 16:42:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Distributed search
Computer vision
Vocabulary
Parallel algorithm
Prior distribution
Inversion
Information retrieval
Distributed computing
Delay
Multiple image
Aggregate model
Bag of words
Visual search
Supervised learning
Classification
visual vocabulary
Distribution function
inverted indexing
Robustness
Localization
Artificial intelligence
parallel computing
Uniformity
Indexing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-3a90d6c10f58eacc14c00866c071a114d6e8e2b3eaa11b311685f6886e74c77a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1239419627
PQPubID 75737
PageCount 14
ParticipantIDs proquest_journals_1239419627
pascalfrancis_primary_27073941
proquest_miscellaneous_1283722485
crossref_citationtrail_10_1109_TMM_2012_2225035
ieee_primary_6331533
crossref_primary_10_1109_TMM_2012_2225035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-Jan.
2013-01-00
2013
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
jeong (ref20) 1995; 6
moosmann (ref28) 2006
ji (ref31) 2009
jegou (ref12) 2008
ref24
ref23
ref26
ref42
ref41
ref22
ref21
mairal (ref29) 2008
ref27
weiss (ref18) 2008
ref8
ref7
kulis (ref25) 1999
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref11
  doi: 10.1109/ICCV.2009.5459466
– ident: ref13
  doi: 10.1109/ICCV.2005.66
– ident: ref22
  doi: 10.1145/1148170.1148232
– year: 2008
  ident: ref18
  article-title: Spectral hashing
  publication-title: Advances in Neural Inf Process Syst
– ident: ref37
  doi: 10.1145/1658377.1658378
– ident: ref10
  doi: 10.1162/jmlr.2003.3.4-5.993
– ident: ref8
  doi: 10.1016/0306-4573(88)90021-0
– ident: ref14
  doi: 10.1145/1290082.1290111
– ident: ref16
  doi: 10.1109/DCC.2009.33
– ident: ref27
  doi: 10.1109/TPAMI.2009.132
– ident: ref3
  doi: 10.1007/s11263-005-3848-x
– ident: ref26
  doi: 10.1145/1282280.1282352
– ident: ref9
  doi: 10.1023/A:1007617005950
– year: 1999
  ident: ref25
  article-title: Kernelized locality-sensitive hashing for scalable image search
  publication-title: Proc Int Conf Computer Vision
– ident: ref33
  doi: 10.1145/2072298.2072372
– ident: ref2
  doi: 10.1109/ICCV.2005.146
– ident: ref32
  doi: 10.1109/CVPR.2010.5540118
– ident: ref4
  doi: 10.1109/ICCV.2003.1238663
– ident: ref21
  doi: 10.1145/96749.98247
– year: 2008
  ident: ref12
  article-title: Hamming embedding and weak geometric consistency for large scale image search
  publication-title: Proc Eur Conf Computer Vision
– ident: ref39
  doi: 10.1145/1277741.1277776
– ident: ref41
  doi: 10.1145/1321440.1321579
– ident: ref1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref5
  doi: 10.1109/CVPR.2006.264
– ident: ref15
  doi: 10.1109/CVPR.2010.5540039
– ident: ref34
  doi: 10.1007/s11263-011-0472-9
– ident: ref40
  doi: 10.1007/s10791-006-9014-4
– ident: ref17
  doi: 10.1109/CVPR.2009.5206733
– ident: ref24
  doi: 10.1109/MM.2003.1196112
– ident: ref30
  doi: 10.1109/TPAMI.2008.138
– year: 2008
  ident: ref29
  article-title: Supervised dictionary learning
  publication-title: Adv Neural Inf Process Syst
– ident: ref19
  doi: 10.1002/(SICI)1097-4571(199408)45:7<443::AID-ASI1>3.0.CO;2-O
– year: 2006
  ident: ref28
  article-title: Fast discriminative visual codebooks using randomized clustering forests
  publication-title: Adv Neural Inf Process Syst
– ident: ref23
  doi: 10.1109/SPIRE.2001.989733
– ident: ref35
  doi: 10.1145/1743384.1743405
– ident: ref6
  doi: 10.1109/CVPR.2007.383172
– ident: ref36
  doi: 10.1145/1460412.1460428
– volume: 6
  start-page: 142
  year: 1995
  ident: ref20
  article-title: Inverted file partitioning schemes in multiple disk systems
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2009
  ident: ref31
  article-title: Vocabulary tree incremental indexing for scalable location recognition
  publication-title: Proc ICME
– ident: ref42
  doi: 10.4108/infoscale.2007.227
– ident: ref38
  doi: 10.1145/1183614.1183644
– ident: ref7
  doi: 10.1109/CVPR.2007.383150
SSID ssj0014507
Score 2.3631988
Snippet In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153
SubjectTerms Applied sciences
Artificial intelligence
Computation
Computer architecture
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Data processing. List processing. Character string processing
Distributed search
Exact sciences and technology
Feature extraction
Indexing
inverted indexing
Learning
Memory organisation. Data processing
Mobile communication
parallel computing
Pattern recognition. Digital image processing. Computational geometry
Reproduction
Searching
Servers
Software
Studies
Visual
visual search
visual vocabulary
Visualization
Vocabulary
Title Learning to Distribute Vocabulary Indexing for Scalable Visual Search
URI https://ieeexplore.ieee.org/document/6331533
https://www.proquest.com/docview/1239419627
https://www.proquest.com/docview/1283722485
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJziUZ9WUBQWJSyWyaye2kxwRD20rbU-AuEW241RVV7uomxzg1zPjPEoBVb0l8iROPLZnxvP4AE5ZbHDbNzxyqBxEQgkVGSklHQkY61JeSk35zrPvanorvt3L-zU4G3JhnHM--MyN6dL78sulbeiobKKShNSTdVhHw63N1Ro8BkL61GgURyzK0Y7pXZIsn9zMZhTDFY_JtmEe2O2PCPKYKhQRqVc4KFWLZvFmY_bS5nobZv13tkEmv8ZNbcb26VUJx__9kR340Kmd4Xk7T3ZhzS32YLuHdAi7Fb4HWy_qE-7DVVd99UdYL8NLKrFL6FguvEMBaCh-9TH8StUWiQKVX3yNnlMqVnj3c9Vgd20s8wHcXl_dXEyjDnchsokUdZTonJXKclbJDPdly4Uly0dZVEc02k-lcpmLTeI03pmEc5XJSmWZcqmwaaqTj7CxWC7cJwgNk1msK2VtlgpnmInTSiRKW5PZUlZ5AJOeFYXtipITNsa88MYJywtkXkHMKzrmBfBleOKhLcjxD9p9GvuBrhv2AI7_4vbQHqfktxQ8gFHP_qJb0quCE4g8J6yiAE6GZlyM5GHRC7dsiAbt_ZiqxH1-v-tD2Iw9ngad4Yxgo_7duCPUampz7KfzMwtw8dk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remh7gBZaNUAhlXqp1Ozaie0kR9SCFko4LYhbZDtOVRXtVt3kAL-eGedBX0LcEnkSJx7bM-N5fAAfWGxw2zc8cqgcREIJFRkpJR0JGOtSXklN-c7FuZpdiNMrebUGn8ZcGOecDz5zE7r0vvxqaVs6KpuqJCH15Ak8RbkveZetNfoMhPTJ0SiQWJSjJTM4JVk-nRcFRXHFE7JumId2uxdCHlWFYiL1Coel7vAs_tmavbw53oRi-NIuzOTHpG3MxN7-VcTxsb_yEjZ6xTM87GbKK1hziy3YHEAdwn6Nb8GL3yoUbsNRX3_1W9gswy9UZJfwsVx4iSLQUATrTXhC9RaJAtVffI2-pmSs8PL7qsXuumjm13BxfDT_PIt65IXIJlI0UaJzVinLWS0z3JktF5ZsH2VRIdFoQVXKZS42idN4ZxLOVSZrlWXKpcKmqU7ewPpiuXBvITRMZrGulbVZKpxhJk5rkShtTWYrWecBTAdWlLYvS07oGNelN09YXiLzSmJe2TMvgI_jEz-7khwP0G7T2I90_bAHsP8Ht8f2OCXPpeAB7A3sL_tFvSo5wchzQisK4P3YjMuRfCx64ZYt0aDFH1OduJ3_d30Az2bz4qw8Ozn_ugvPY4-uQSc6e7De_GrdO9RxGrPvp_Ydzd31Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Distribute+Vocabulary+Indexing+for+Scalable+Visual+Search&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=RONGRONG+JI&rft.au=DUAN%2C+Ling-Yu&rft.au=JIE+CHEN&rft.au=LEXING+XIE&rft.date=2013&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1520-9210&rft.volume=15&rft.issue=1&rft.spage=153&rft.epage=166&rft_id=info:doi/10.1109%2FTMM.2012.2225035&rft.externalDBID=n%2Fa&rft.externalDocID=27073941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon