Learning to Distribute Vocabulary Indexing for Scalable Visual Search

In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 15; no. 1; pp. 153 - 166
Main Authors Ji, Rongrong, Duan, Ling-Yu, Chen, Jie, Xie, Lexing, Yao, Hongxun, Gao, Wen
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, there is an ever-increasing research focus on Bag-of-Words based near duplicate visual search paradigm with inverted indexing. One fundamental yet unexploited challenge is how to maintain the large indexing structures within a single server subject to its memory constraint, which is extremely hard to scale up to millions or even billions of images. In this paper, we propose to parallelize the near duplicate visual search architecture to index millions of images over multiple servers, including the distribution of both visual vocabulary and the corresponding indexing structure. We optimize the distribution of vocabulary indexing from a machine learning perspective, which provides a "memory light" search paradigm that leverages the computational power across multiple servers to reduce the search latency. Especially, our solution addresses two essential issues: "What to distribute" and "How to distribute". "What to distribute" is addressed by a "lossy" vocabulary Boosting, which discards both frequent and indiscriminating words prior to distribution. "How to distribute" is addressed by learning an optimal distribution function, which maximizes the uniformity of assigning the words of a given query to multiple servers. We validate the distributed vocabulary indexing scheme in a real world location search system over 10 million landmark images. Comparing to the state-of-the-art alternatives of single-server search [5], [6], [16] and distributed search [23], our scheme has yielded a significant gain of about 200% speedup at comparable precision by distributing only 5% words. We also report excellent robustness even when partial servers crash.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2012.2225035