Guanylin-immunoreactive cells in the female and male rat adenohypophysis and their changes under various physiological and experimental conditions

The peptide guanylin, first isolated from rat small intestine, is involved in the regulation of water-electrolyte transport between the intracellular and extracellular compartments of the epithelia. The main sites of guanylin expression are the intestinal, airway, or exocrine gland ductal epithelia...

Full description

Saved in:
Bibliographic Details
Published inHistochemistry and cell biology Vol. 123; no. 3; pp. 303 - 313
Main Authors D'Este, Loredana, Casini, Arianna, Cetin, Yalcin, Wenger, Tibor, Renda, Tindaro G
Format Journal Article
LanguageEnglish
Published Germany Springer Nature B.V 01.03.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The peptide guanylin, first isolated from rat small intestine, is involved in the regulation of water-electrolyte transport between the intracellular and extracellular compartments of the epithelia. The main sites of guanylin expression are the intestinal, airway, or exocrine gland ductal epithelia where guanylin acts in a paracrine/luminocrine fashion. Because guanylin also circulates in the blood, sources of this peptide were sought in endocrine glands. Our group has already demonstrated the presence of guanylin-immunoreactive cells in the pars tuberalis of male rat adenohypophysis. In this study, we investigated whether guanylin-immunoreactive cells exist also in the adenohypophysial pars distalis and whether their appearance or distribution correlates with various physiological conditions in female rats or alters after gonadectomy in both sexes. These studies revealed that the rat pars distalis contains two guanylin-immunoreactive cell types, gonadotrophic cells, whose number varied notably during the estrous cycle, reached a peak in the proestrous phase, and increased consistently during pregnancy, in lactating animals, and after gonadectomy, and folliculo-stellate cells, a discrete number of which were found only in female rats at the estrous phase. These findings suggest that guanylin is involved in regulating gonadotrophic cell function. They also add important information on the controversially discussed functions of folliculo-stellate cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0948-6143
1432-119X
DOI:10.1007/s00418-004-0738-1