Nonlinear Model Reduction via Discrete Empirical Interpolation

A dimension reduction method called discrete empirical interpolation is proposed and shown to dramatically reduce the computational complexity of the popular proper orthogonal decomposition (POD) method for constructing reduced-order models for time dependent and/or parametrized nonlinear partial di...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on scientific computing Vol. 32; no. 5; pp. 2737 - 2764
Main Authors Chaturantabut, Saifon, Sorensen, Danny C.
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2010
Subjects
Online AccessGet full text
ISSN1064-8275
1095-7197
DOI10.1137/090766498

Cover

Loading…
More Information
Summary:A dimension reduction method called discrete empirical interpolation is proposed and shown to dramatically reduce the computational complexity of the popular proper orthogonal decomposition (POD) method for constructing reduced-order models for time dependent and/or parametrized nonlinear partial differential equations (PDEs). In the presence of a general nonlinearity, the standard POD-Galerkin technique reduces dimension in the sense that far fewer variables are present, but the complexity of evaluating the nonlinear term remains that of the original problem. The original empirical interpolation method (EIM) is a modification of POD that reduces the complexity of evaluating the nonlinear term of the reduced model to a cost proportional to the number of reduced variables obtained by POD. We propose a discrete empirical interpolation method (DEIM), a variant that is suitable for reducing the dimension of systems of ordinary differential equations (ODEs) of a certain type. As presented here, it is applicable to ODEs arising from finite difference discretization of time dependent PDEs and/or parametrically dependent steady state problems. However, the approach extends to arbitrary systems of nonlinear ODEs with minor modification. Our contribution is a greatly simplified description of the EIM in a finite-dimensional setting that possesses an error bound on the quality of approximation. An application of DEIM to a finite difference discretization of the one-dimensional FitzHugh-Nagumo equations is shown to reduce the dimension from 1024 to order 5 variables with negligible error over a long-time integration that fully captures nonlinear limit cycle behavior. We also demonstrate applicability in higher spatial dimensions with similar state space dimension reduction and accuracy results. [PUBLICATION ABSTRACT]
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1064-8275
1095-7197
DOI:10.1137/090766498