Anti-inflammatory Activities of Gouania leptostachya Methanol Extract and its Constituent Resveratrol

Gouania leptostachya DC. var. tonkinensis Pitard. Rhamnaceae is a traditional medicinal plant used in Thailand for treating various inflammatory symptoms. However, no systematic studies have been performed concerning the anti‐inflammatory effects or molecular mechanisms of this plant. The immunophar...

Full description

Saved in:
Bibliographic Details
Published inPhytotherapy research Vol. 29; no. 3; pp. 381 - 392
Main Authors Dung, To Thi Mai, Lee, Jongsung, Kim, Eunji, Yoo, Byong Chul, Ha, Van Thai, Kim, Yong, Yoon, Deok Hyo, Hong, Sungyoul, Baek, Kwang-Soo, Sung, Nak Yoon, Kim, Tae Woong, Kim, Jong-Hoon, Cho, Jae Youl
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gouania leptostachya DC. var. tonkinensis Pitard. Rhamnaceae is a traditional medicinal plant used in Thailand for treating various inflammatory symptoms. However, no systematic studies have been performed concerning the anti‐inflammatory effects or molecular mechanisms of this plant. The immunopharmacological activities of a methanol extract from the leaves and twigs of G. leptostachya (Gl‐ME) were elucidated based on the gastritis symptoms of mice treated with HCl/EtOH and the inflammatory responses, such as nitric oxide (NO) release and prostaglandin E2 (PGE2) production, from RAW264.7 cells and peritoneal macrophages. Moreover, inhibitory target molecules were also assessed. Gl‐ME dose‐dependently diminished the secretion of NO and PGE2 from LPS‐stimulated RAW264.7 cells and peritoneal macrophages. The gastritis lesions of HCl/EtOH‐treated mice were also attenuated after Gl‐ME treatment. The extract (50 and 300 µg/mL) clearly reduced mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)‐2, nuclear translocation of p65/nuclear factor (NF)‐κB, phosphorylation of p65‐activating upstream enzymes, such as protein kinase B (AKT), inhibitor of κBα kinase (IKK), and inhibitor of κB (IκBα), and the enzymatic activity of Src. By HPLC analysis, one of the major components in the extract was revealed as resveratrol with NO and Src inhibitory activities. Moreover, this compound suppressed NO production and HCl/EtOH‐induced gastric symptoms. Therefore, these results suggest that Gl‐ME might be useful as an herbal anti‐inflammatory medicine through the inhibition of Src and NF‐κB activation pathways. The efficacy data of G. leptostachya also implies that this plant could be further tested to see whether it can be developed as potential anti‐inflammatory preparation. Copyright © 2014 John Wiley & Sons, Ltd.
Bibliography:ark:/67375/WNG-Z3NZSWBK-7
ArticleID:PTR5262
istex:A7CCB0060ABB3E37E5BD331A2A5556F639EA95B3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0951-418X
1099-1573
DOI:10.1002/ptr.5262