Improved magnetic and ferroelectric properties of Sc and Ti codoped multiferroic nano BiFeO₃ prepared via sonochemical synthesis

The room temperature multiferroic properties of bulk BiFeO3 are not exciting enough for its application in devices. Here, we report the sonochemical synthesis of scandium and titanium codoped BiFeO3 nanoparticles which exhibit improved magnetic and ferroelectric properties at room temperature. The n...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 43; no. 21; pp. 7838 - 7846
Main Authors Dutta, Dimple P, Mandal, B P, Mukadam, M D, Yusuf, S M, Tyagi, A K
Format Journal Article
LanguageEnglish
Published England 07.06.2014
Online AccessGet full text

Cover

Loading…
More Information
Summary:The room temperature multiferroic properties of bulk BiFeO3 are not exciting enough for its application in devices. Here, we report the sonochemical synthesis of scandium and titanium codoped BiFeO3 nanoparticles which exhibit improved magnetic and ferroelectric properties at room temperature. The nanoparticles have been checked for phase purity and composition using powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The size and morphology of the nanoparticles have been confirmed using scanning electron microscopy (SEM), and both low and high resolution transmission electron microscopy (TEM/HRTEM). The breaking of the spin cycloid due to the smaller size and slight structural distortion caused by the doping has been found to be instrumental for the enhancement of multiferroic properties. The electrical polarization increases significantly in the case of BiFe(0.925)Sc(0.05)Ti(0.025)O3 nanoparticles. A marked reduction in the leakage current was seen compared to undoped BiFeO3. Magnetoelectric coupling was also observed in the BiFe(0.925)Sc(0.05)Ti(0.025)O3 sample. Our results demonstrate that codoping with Sc and Ti ions is an effective way to rectify and enhance the multiferroic nature of BiFeO3.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-9226
1477-9234
DOI:10.1039/c3dt52779d