Adsorptive removal of resorcinol on a novel ordered mesoporous carbon (OMC) employing COK-19 silica scaffold: Kinetics and equilibrium study

Phenolic compounds and their derivatives have been found in industrial wastewater, which pose threats to the natural environment. Ordered mesoporous carbon (OMC) has been identified as an ideal adsorbent possessing high specific surface area and large pore volume to alleviate these pollutants. A nov...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 75; pp. 307 - 317
Main Authors Ahmad, Zaki Uddin, Lian, Qiyu, Zappi, Mark E., Buchireddy, Prashanth R., Gang, Daniel Dianchen
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phenolic compounds and their derivatives have been found in industrial wastewater, which pose threats to the natural environment. Ordered mesoporous carbon (OMC) has been identified as an ideal adsorbent possessing high specific surface area and large pore volume to alleviate these pollutants. A novel ordered mesoporous carbon was prepared using COK-19 template with the cubic Fm3m structure for the first time. Ordered mesoporous silica COK-19 was synthesized and reported in 2015. Sucrose as the carbon precursor was impregnated into the mesopores of silica and converted to carbon through carbonization process using sulfuric acid as a catalyst. Ordered mesoporous carbon was obtained after the removal of silica framework using hydrofluoric acid. Boric acid was employed for the preparation of OMCs with tunable pore sizes in the range of 6.9–16.6 nm. Several characterization techniques such as nitrogen adsorption–desorption isotherms, transmission electron microscope (TEM), Fourier transform infrared spectroscopy, Boehm titration and elemental analysis were employed to characterize the OMCs. The pore size analysis and TEM images confirmed that OMC has replicated the mesostructure of the COK-19. Results obtained from adsorption kinetics and isotherms suggest that the Pseudo-second-order model and Langmuir isotherm well described the experimental data. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2018.04.014