mab-2 encodes RNT-1, a C. elegans Runx homologue essential for controlling cell proliferation in a stem cell-like developmental lineage

In this report, we demonstrate that C. elegans mab-2 mutants have defects in the development of a male-specific sense organ because of a failure in the proliferation of the stem cell-like lateral hypodermal (seam) cells. We show, by positional cloning, that mab-2 encodes RNT-1, the only C. elegans m...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 132; no. 22; pp. 5043 - 5054
Main Authors Nimmo, Rachael, Antebi, Adam, Woollard, Alison
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Limited 01.11.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this report, we demonstrate that C. elegans mab-2 mutants have defects in the development of a male-specific sense organ because of a failure in the proliferation of the stem cell-like lateral hypodermal (seam) cells. We show, by positional cloning, that mab-2 encodes RNT-1, the only C. elegans member of the Runx family of transcriptional regulators, which are postulated to act both as oncogenes and tumour suppressors in mammalian cells. Importantly, we find that rnt-1 is a rate-limiting regulator of seam cell proliferation in C. elegans , as overexpression of rnt-1 at particular developmental stages is capable of driving extra cell divisions, leading to seam cell hyperplasia. Loss of rnt-1 is correlated with upregulation of cki-1 , a CDK inhibitor. Deregulated expression of Runx genes in humans is associated with various cancers, particularly leukaemias, suggesting a conserved role for Runx genes in controlling cell proliferation during development, especially in stem cell lineages. C. elegans is therefore an important model system for studying the biology, and oncogenic potential, of Runx genes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.02102