Effect of air-exposed biocathode on the performance of a Thauera-dominated membraneless single-chamber microbial fuel cell (SCMFC)

To investigate the effect of air-exposed biocathode (AEB) on the performance of single-chamber microbial fuel cell (SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nit...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 66; pp. 216 - 224
Main Authors Yang, Nuan, Zhan, Guoqiang, Wu, Tingting, Zhang, Yanyan, Jiang, Qinrui, Li, Daping, Xiang, Yuanying
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To investigate the effect of air-exposed biocathode (AEB) on the performance of single-chamber microbial fuel cell (SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nitrogen removal and current generation. In Test 1 of 95% AEB, removal rates of ammonia, total nitrogen (TN) and chemical oxygen demand (COD) reached 99.34%±0.11%, 99.34%±0.10% and 90.79%±0.12%, respectively. The nitrogen removal loading rates were 36.38gN/m3/day. Meanwhile, current density and power density obtained at 0.7A/m3 and 104mW/m3 respectively. Further experiments on open-circuit (Test 2) and carbon source (Test 3) indicated that this high performance could be attributed to simultaneous biological nitrification/denitrification and aerobic denitrification, as well as bioelectrochemical denitrification. Results of community analysis demonstrated that both microbial community structures on the surface of the cathode and in the liquid of the chamber were different. The percentage of Thauera, identified as denitrifying bacteria, maintained at a high level of over 50% in water, but decreased gradually in the AEB. Moreover, the genus Nitrosomonas, Alishewanella, Arcobacter and Rheinheimera were significantly enriched in the AEB, which might contribute to both enhancement of nitrogen removal and electricity generation. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2017.05.013