Transmission expansion planning: a mixed-integer LP approach

This paper presents a mixed-integer LP approach to the solution of the long-term transmission expansion planning problem. In general, this problem is large-scale, mixed-integer, nonlinear, and nonconvex. We derive a mixed-integer linear formulation that considers losses and guarantees convergence to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 18; no. 3; pp. 1070 - 1077
Main Authors Alguacil, N., Motto, A.L., Conejo, A.J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a mixed-integer LP approach to the solution of the long-term transmission expansion planning problem. In general, this problem is large-scale, mixed-integer, nonlinear, and nonconvex. We derive a mixed-integer linear formulation that considers losses and guarantees convergence to optimality using existing optimization software. The proposed model is applied to Garver's 6-bus system, the IEEE Reliability Test System, and a realistic Brazilian system. Simulation results show the accuracy as well as the efficiency of the proposed solution technique.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2003.814891