Advances in Reversed Nested Miller Compensation
The use of two frequency compensation schemes for three-stage operational transconductance amplifiers, namely the reversed nested Miller compensation with nulling resistor (RN-MCNR) and reversed active feedback frequency compensation (RAFFC), is presented in this paper. The techniques are based on t...
Saved in:
Published in | IEEE transactions on circuits and systems. I, Regular papers Vol. 54; no. 7; pp. 1459 - 1470 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The use of two frequency compensation schemes for three-stage operational transconductance amplifiers, namely the reversed nested Miller compensation with nulling resistor (RN-MCNR) and reversed active feedback frequency compensation (RAFFC), is presented in this paper. The techniques are based on the basic RNMC and show an inherent advantage over traditional compensation strategies, especially for heavy capacitive loads. Moreover, they are implemented without entailing extra transistors, thus saving circuit complexity and power consumption. A well-defined design procedure, introducing phase margin as main design parameter, is also developed for each solution. To verify the effectiveness of the techniques, two amplifiers have been fabricated in a standard 0.5-mum CMOS process. Experimental measurements are found in good agreement with theoretical analysis and show an improvement in small-signal and large-signal amplifier performances. Finally, an analytical comparison with the nonreversed counterparts topologies, which shows the superiority of the proposed solutions, is also included. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2007.900170 |