Synthesis and antiproliferative activity of sulfonamide-based peptidomimetic calpain inhibitors

[Display omitted] The calpains are a conserved family of cysteine proteases that includes several isoforms of which µ–calpain and m-calpain are the most widely distributed in mammalian cells. Calpains have been implicated in normal physiological processes as well as cellular abnormalities such as ne...

Full description

Saved in:
Bibliographic Details
Published inBioorganic & medicinal chemistry Vol. 28; no. 9; p. 115433
Main Authors Donkor, Isaac O., Xu, Jin, Liu, Jiuyu, Cameron, Keyuna
Format Journal Article
LanguageEnglish
Published OXFORD Elsevier Ltd 01.05.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] The calpains are a conserved family of cysteine proteases that includes several isoforms of which µ–calpain and m-calpain are the most widely distributed in mammalian cells. Calpains have been implicated in normal physiological processes as well as cellular abnormalities such as neurodegenerative disorders, cataract, and cancer. Therefore, calpain inhibitors are of interest as potential therapeutic agents. We have synthesized four new sulfonamide-based peptidomimetic compounds 2–5 as inhibitors of μ-calpain that incorporate (E)-1-(phenyl)-2-phenyldiazene and (E)-1-(phenyl)-2-phenylethene functionalities as the N-terminal capping groups of the inhibitors. Compound 5 with Ki value of 9 nM versus μ-calpain was the most potent member of the group. The compounds were predicted to be more lipophilic compared to MDL28170 based on CLogP estimation. They displayed moderate to good antiproliferative activity versus melanoma cell lines (A-375 and B-16F1) and PC-3 prostate cancer cells in vitro. Additionally, one member of the group (compound 3) inhibited DU-145 cell invasion by 80% at 2 μM concentration in the Matrigel cell invasion assay.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2020.115433