Effect of gas type on high repetition rate performance of a triggered, corona stabilised switch

This paper reports on the work undertaken to determine the effect of the gas type on the high repetition rate performance of a triggered corona stabilised (TCS) closing switch at a charging voltage of 23 kV. The voltage/pressure (V/p) characteristics as well as the ability of the switch to operate a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on dielectrics and electrical insulation Vol. 10; no. 2; pp. 245 - 255
Main Authors Koutsoubis, J.M., MacGregor, S.J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper reports on the work undertaken to determine the effect of the gas type on the high repetition rate performance of a triggered corona stabilised (TCS) closing switch at a charging voltage of 23 kV. The voltage/pressure (V/p) characteristics as well as the ability of the switch to operate at high repetition rates were measured with SF/sub 6/, air and six different SF/sub 6//air mixtures having an SF/sub 6/ concentration ranging from 75 to 2% by pressure. The high repetition rate tests were conducted with a high-power facility at a pulse repetition frequency (PRF) ranging from 500 Hz up to a maximum of 3 kHz. During the investigation, it was found that for the given nonuniform switch geometry the high repetition rate performance of the device was closely associated with the efficiency of corona stabilisation, as measured from the V/p characteristics. This was clearly manifested by the superior performance of most of the SF/sub 6//air mixtures tested, which displayed a more efficient corona stabilisation compared to pure SF/sub 6/. In contrast, air displayed the worst performance of all the gases tested, due to the weak V/p characteristic and inefficient corona stabilisation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1070-9878
1558-4135
DOI:10.1109/TDEI.2003.1194106