Efficient Optimization of the Merit Factor of Long Binary Sequences

Autocorrelation sidelobes are a form of self-noise that reduce the effectiveness of phase coding in radar and communication systems. The merit factor is a well-known measure related to the autocorrelation sidelobe energy of a sequence. In this paper an equation is derived that allows the change in t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 57; no. 12; pp. 8084 - 8094
Main Author Baden, J. M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Autocorrelation sidelobes are a form of self-noise that reduce the effectiveness of phase coding in radar and communication systems. The merit factor is a well-known measure related to the autocorrelation sidelobe energy of a sequence. In this paper an equation is derived that allows the change in the merit factor of a binary sequence to be computed for all single-element changes with O ( N log N ) operations, where N is the sequence length. The approach is then extended to multiple-element changes, allowing the merit factor change to be calculated with an additional O ( N s 3 ) operations, where N s is the number of changed elements, irrespective of sequence length. The multiple-element calculations can be used to update the single-element calculations so that in iterative use only O ( N ) operations are required per element change to keep the single-element calculations current. A steep descent algorithm (a variation on the steepest descent method) employing these two techniques was developed and applied to quarter-rotated, periodically extended Legendre sequences, producing optimized sequences with an apparent asymptotic merit factor of approximately 6.3758, modestly higher than the best known prior result of approximately 6.3421. Modified Jacobi sequences improve after steep descent to an approximate asymptotic merit factor of 6.4382. Three-prime and four-prime Jacobi sequences converge very slowly making a determination difficult but appear to have a higher post-steep-descent asymptotic merit factor than Legendre or modified Jacobi sequences.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2011.2164778