Reduced P-glycoprotein recognition of a radioiodine-labeled phosphonium cation by stilbenylation for mitochondrial membrane potential based-imaging
[Display omitted] The accumulation of radiolabeled phosphonium cations in cells is dependent on the mitochondrial membrane potential (MMP). However, the efflux of these cations from tumor cells via P-glycoprotein (P-gp) limits their clinical application as MMP-based imaging tracers. In the present s...
Saved in:
Published in | Bioorganic & medicinal chemistry Vol. 84; p. 117260 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
OXFORD
Elsevier Ltd
15.04.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
The accumulation of radiolabeled phosphonium cations in cells is dependent on the mitochondrial membrane potential (MMP). However, the efflux of these cations from tumor cells via P-glycoprotein (P-gp) limits their clinical application as MMP-based imaging tracers. In the present study, we designed (E)-diethyl-4-[125I]iodobenzyl-4-stilbenylphosphonium ([125I]IDESP), which contains a stilbenyl substituent, as a P-gp inhibitor to reduce P-gp recognition, and evaluated its biological properties in comparison with 4-[125I]iodobenzyl dipropylphenylphosphonium ([125I]IDPP). The in vitro cellular uptake ratio of [125I]IDESP in P-gp expressing K562/Vin cells to the parent (P-gp negative) K562 cells was significantly higher than that of [125I]IDPP. The efflux rate of [125I]IDESP was not significantly different between K562 and K562/Vin, while [125I]IDPP was rapidly effluxed from K562/Vin compared with K562, and the efflux of [125I]IDPP from K562/Vin was inhibited by the P-gp inhibitor, cyclosporine A. The cellular uptake of [125I]IDESP was well correlated with the MMP levels. These results suggested that [125I]IDESP was accumulated in cells depending on the MMP levels, without being effluxed via P-gp, while [125I]IDPP was rapidly effluxed from the cells via P-gp. Despite having suitable in vitro properties for MMP-based imaging, [125I]IDESP showed rapid blood clearance and lower tumor accumulation than [125I]IDPP. Improvement in the normal tissue distribution of [125I]IDESP is required to develop an agent for use in in vivo MMP-based tumor imaging. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2023.117260 |