Primary and recombined emitting species in laser-induced plasmas of organic explosives in controlled atmospheres

The main difficulties in spectral interpretation of laser-induced plasmas from species containing C, N, O or H rely on the crossroad concerning their origin: direct release from native bonds of the molecule or recombination of atoms and molecular fragments with ambient constituents. In order to add...

Full description

Saved in:
Bibliographic Details
Published inJournal of analytical atomic spectrometry Vol. 29; no. 9; pp. 1675 - 1685
Main Authors Delgado, Tomás, Vadillo, José M, Laserna, J. Javier
Format Journal Article
LanguageEnglish
Published 2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The main difficulties in spectral interpretation of laser-induced plasmas from species containing C, N, O or H rely on the crossroad concerning their origin: direct release from native bonds of the molecule or recombination of atoms and molecular fragments with ambient constituents. In order to add further insight into the issue, this paper presents the influence of the surrounding atmosphere (gas type and pressure) on the spectra of energetic nitro compounds (TNT and PETN). The study was completed with coincidental detection at high vacuum of both optical emission and mass spectra originated from the same laser event. We have proposed probable fragmentation pathways for the compounds taking into account the reactions that prevail over other routes depending on experimental conditions: laser fluence, pressure and the surrounding atmosphere. The suggested routes are supported by identification of many non-emitting, reactive species present in the plasma using the corresponding mass spectra. The main difficulties in spectral interpretation of laser-induced plasmas from species containing C, N, O or H rely on the crossroad concerning their origin: direct release from native bonds of the molecule or recombination of atoms and molecular fragments with ambient constituents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0267-9477
1364-5544
DOI:10.1039/c4ja00157e