Effect and mechanism of Banxia Xiexin decoction in colorectal cancer: A network pharmacology approach

Banxia Xiexin decoction (BXD) is a traditional Chinese medicine with anti-colorectal cancer (CRC) activity. However, its bioactive constituents and its mechanism of action remain unclear. Herein, we explored the mechanism of action of BXD against CRC using a network pharmacology approach. First, the...

Full description

Saved in:
Bibliographic Details
Published inPhytomedicine (Stuttgart) Vol. 123; p. 155174
Main Authors Wang, Yi, Zhao, Tong, Huang, Chuyue, Liu, Fei, Zhang, Yang, Kong, Desong, Fan, Zhimin
Format Journal Article
LanguageEnglish
Published Germany 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Banxia Xiexin decoction (BXD) is a traditional Chinese medicine with anti-colorectal cancer (CRC) activity. However, its bioactive constituents and its mechanism of action remain unclear. Herein, we explored the mechanism of action of BXD against CRC using a network pharmacology approach. First, the targets of the main chemical components of BXD were predicted and collected through a database, and the intersection of compound targets and disease targets was obtained. Subsequently, protein-protein interaction network analysis, Gene Ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to explore the potential mechanisms underlying the effects of BXD on CRC. Finally, a CRC cell model and a CRC xenograft model in nude mice were utilized to further determine the mechanism of action. A compound-therapeutic target network of BXD was constructed, revealing 146 cellular targets of BXD. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling axis was identified as the main target of BXD. Using in vitro and in vivo models, the activity of BXD against CRC was found to be mediated through ferritinophagy by targeting the PI3K/AKT/mTOR axis, leading to intracellular iron accumulation, reactive oxygen species activation, and finally ferroptosis. Through the application of network pharmacology and in vitro/in vivo validation experiments, we discovered that BXD exerts anti-CRC effects via the ferritinophagy pathway. Furthermore, we elucidated the potential mechanism underlying its induction of ferritinophagy. These findings demonstrate the significant potential of traditional drugs in managing CRC and support their wider clinical application in combination chemotherapy, targeted therapy, and immunotherapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-7113
1618-095X
DOI:10.1016/j.phymed.2023.155174