Preparation of porous semi-IPN temperature-sensitive hydrogel-supported nZVI and its application in the reduction of nitrophenol

Nanoscale zero-valent iron (nZVI) particles supported on a porous, semi-interpenetrating (semi-IPN), temperature-sensitive composite hydrogel (PNIPAm-PHEMA). nZVI@PNIPAm-PHEMA, was successfully synthesized and characterized by FT-IR, SEM, EDS, XRD and the weighing method. The loading of nZVI was 0.1...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 82; pp. 93 - 102
Main Authors Li, Lixia, Wang, Ruiwei, Xing, Xiaodong, Qu, Wenqiang, Chen, Shutong, Zhang, Yunlong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanoscale zero-valent iron (nZVI) particles supported on a porous, semi-interpenetrating (semi-IPN), temperature-sensitive composite hydrogel (PNIPAm-PHEMA). nZVI@PNIPAm-PHEMA, was successfully synthesized and characterized by FT-IR, SEM, EDS, XRD and the weighing method. The loading of nZVI was 0.1548 ± 0.0015 g/g and the particle size was 30–100 nm. NZVI was uniformly dispersed on the pore walls inside the PNIPAm-PHEMA. Because of the well-dispersed nZVI, the highly porous structure, and the synergistic effect of PNIPAm-PHEMA, nZVI@PNIPAm-PHEMA showed excellent reductive activity and wide pH applicability. 95% of 4-NP in 100 mL of 400 mg/L 4-NP solution with initial pH 3.0–9.0 could be completely reduced into 4-AP by about 0.0548 g of fresh supported nZVI at 18–25 °C under stirring (110 r/min) within 45 min reaction time. A greater than 99% 4-NP degradation ratio was obtained when the initial pH was 5.0–9.0. The reduction of 4-NP by nZVI@PNIPAm-PHEMA was in agreement with the pseudo-first-order kinetics model with Kobs values of 0.0885–0.101 min−1. NZVI@PNIPAm-PHEMA was able to be recycled, and about 85% degradation ratio of 4-NP was obtained after its sixth reuse cycle. According to the temperature sensitivity of PNIPAm-PHEMA, nZVI@PNIPAm-PHEMA exhibited very good storage stability, and about 88.9% degradation ratio of 4-NP was obtained after its storage for 30 days. The hybrid reducer was highly efficient for the reduction of 2-NP, 3-NP, 2-chloro-4-nitrophenol and 2-chloro-4-nitrophenol. Our results suggest that PNIPAm-PHEMA could be a good potential carrier, with nZVI@PNIPAm-PHEMA having potential value in the application of reductive degradation of nitrophenol pollutants. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2019.02.024