Ambient Stability Enhancement of Thin-Film Transistor With InGaZnO Capped With InGaZnO:N Bilayer Stack Channel Layers

A thin-film transistor (TFT) with bilayer stack structure of amorphous nitrogenated InGaZnO (IGZO) (a-IGZO:N) on an IGZO channel is proposed to enhance device stability. The a-IGZO:N acting as a back-channel passivation (BCP) is formed sequentially just after the sputter-deposited amorphous IGZO (a-...

Full description

Saved in:
Bibliographic Details
Published inIEEE electron device letters Vol. 32; no. 10; pp. 1397 - 1399
Main Authors Po-Tsun Liu, Yi-Teh Chou, Li-Feng Teng, Fu-Hai Li, Chur-Shyang Fuh, Shieh, H. D.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A thin-film transistor (TFT) with bilayer stack structure of amorphous nitrogenated InGaZnO (IGZO) (a-IGZO:N) on an IGZO channel is proposed to enhance device stability. The a-IGZO:N acting as a back-channel passivation (BCP) is formed sequentially just after the sputter-deposited amorphous IGZO (a-IGZO) film with in situ nitrogen incorporation process. The a-IGZO:N can effectively prevent the a-IGZO channel from exposing to the atmosphere and retarding interactions with ambient oxygen species. Also, the optical energy bandgap of the a-IGZO:N film is decreased due to the addition of nitrogen. This causes the a-IGZO TFT with a-IGZO:N BCP to exhibit high immunity to the ultraviolet-radiation impact.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2011.2163181