Micromechanical mixer-filters ("mixlers")

A device comprised of interlinked micromechanical resonators with capacitive mixer transducers has been demonstrated to perform both frequency translation (i.e., mixing) and highly selective low-loss filtering of applied electrical input signals. In particular, successful downconversion of a 200-MHz...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 13; no. 1; pp. 100 - 112
Main Authors Ark-Chew Wong, Nguyen, C.T.-C.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A device comprised of interlinked micromechanical resonators with capacitive mixer transducers has been demonstrated to perform both frequency translation (i.e., mixing) and highly selective low-loss filtering of applied electrical input signals. In particular, successful downconversion of a 200-MHz radio frequency (RF) signal down to a 37-MHz intermediate frequency (IF) and subsequent high-Q bandpass filtering at the IF are demonstrated using this single, passive, micromechanical device, all with less than 13 dB of combined mixing conversion and filter insertion loss. The mixer-filter (or "mixler") RF-to-IF voltage transfer function is shown to depend upon a ratio of local oscillator amplitude and applied bias voltages.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2003.823218