Optimal Linear Fusion for Distributed Detection Via Semidefinite Programming
Consider the problem of signal detection via multiple distributed noisy sensors. We study a linear decision fusion rule of [Z. Quan, S. Cui, and A. H. Sayed, ¿Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks,¿ IEEE J. Sel. Topics Signal Process. , vol. 2, no. 1, pp. 28-40,...
Saved in:
Published in | IEEE transactions on signal processing Vol. 58; no. 4; pp. 2431 - 2436 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Consider the problem of signal detection via multiple distributed noisy sensors. We study a linear decision fusion rule of [Z. Quan, S. Cui, and A. H. Sayed, ¿Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks,¿ IEEE J. Sel. Topics Signal Process. , vol. 2, no. 1, pp. 28-40, Feb. 2008] to combine the local statistics from individual sensors into a global statistic for binary hypothesis testing. The objective is to maximize the probability of detection subject to an upper limit on the probability of false alarm. We propose a more efficient solution that employs a divide-and-conquer strategy to divide the decision optimization problem into two subproblems. Each subproblem is a nonconvex program with a quadratic constraint. Through a judicious reformulation and by employing a special matrix decomposition technique, we show that the two nonconvex subproblems can be solved by semidefinite programs in a globally optimal fashion. Hence, we can obtain the optimal linear fusion rule for the distributed detection problem. Compared with the likelihood-ratio test approach, optimal linear fusion can achieve comparable performance with considerable design flexibility and reduced complexity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2009.2039823 |