Moxonidine ameliorates cardiac injury in rats with metabolic syndrome by regulating autophagy
Reduced cardiac autophagy, ischemic injury, sympathetic overactivity, and apoptosis all contribute to metabolic syndrome (MetS)-associated cardiovascular risks. NR4A2, an orphan nuclear receptor NR4A family member, induces autophagy while suppressing apoptosis in myocardial infarction. Moxonidine, a...
Saved in:
Published in | Life sciences (1973) Vol. 312; p. 121210 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reduced cardiac autophagy, ischemic injury, sympathetic overactivity, and apoptosis all contribute to metabolic syndrome (MetS)-associated cardiovascular risks. NR4A2, an orphan nuclear receptor NR4A family member, induces autophagy while suppressing apoptosis in myocardial infarction. Moxonidine, a sympathoinhibitor imidazoline1 receptor (I1R) agonist, has beneficial metabolic and hemodynamic effects; however, whether autophagy and/or NR4A2 signaling are involved in moxonidine's cardiovascular effects via I1R activation, is unknown, and is the aim of this study.
To induce MetS, rats were fed 3 % salt in their diet and 10 % fructose in their drinking water for 12 weeks. MetS-rats were given either moxonidine (6 mg/kg/day, gavage), efaroxan (I1R antagonist, 0.6 mg/kg/day, i.p), both treatments, or vehicles for the last two weeks. Blood pressure, lipid profile, and glycemic control were evaluated. Histopathological examination, circulating cardiac troponin I (c-TnI), proinflammatory interleukin-6 (IL-6), apoptosis (active caspase-3 and Fas-immunostaining), interstitial fibrosis [transforming growth factor-β1 (TGF-β1), Mallory's trichrome staining], and extracellular matrix remodeling [matrix metalloproteinase-9 (MMP-9)], were used to assess cardiac pathology. Cardiac NR4A2 and its downstream factor, p53, as well as autophagic flux markers, SQSTM1/p62, LC3, and Beclin-1 were also determined.
Moxonidine significantly ameliorated MetS-induced metabolic and hemodynamic derangements and the associated cardiac pathology. Moxonidine restored NR4A2 and p53 myocardial levels and enhanced autophagic flux via modulating SQSTM1/p62, LC3, and Beclin-1. Efaroxan reversed the majority of the moxonidine-induced improvements.
The current study suggests that autophagy modulation via I1R activation is involved in moxonidine-mediated cardiac beneficial effects in MetS.
[Display omitted] |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2022.121210 |