The acute oral toxicity test of ethanol extract of salt-processed Psoraleae Fructus and its acute hepatotoxicity and nephrotoxicity risk assessment

Psoraleae Fructus is a well-known Traditional Chinese Medicine which has long been used to warm and tonify the kidney and treat diseases such as osteoporosis and diarrhea. However, it may cause multiorgan injury, which limited its use. The aim of this study was to identify the components of ethanol...

Full description

Saved in:
Bibliographic Details
Published inJournal of ethnopharmacology Vol. 309; p. 116334
Main Authors Gao, Chen, Liu, Chang, Wei, Yuanyuan, Wang, Qingtao, Ni, Xuan, Wu, Shaofeng, Fang, Yizhuo, Hao, Zhihui
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 12.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Psoraleae Fructus is a well-known Traditional Chinese Medicine which has long been used to warm and tonify the kidney and treat diseases such as osteoporosis and diarrhea. However, it may cause multiorgan injury, which limited its use. The aim of this study was to identify the components of ethanol extract of salt-processed Psoraleae Fructus (EEPF) and systematically investigate its acute oral toxicity and the mechanism underlying its acute hepatotoxicity. In this study, the UHPLC-HRMS analysis was carried out for components identification. Followed by acute oral toxicity test in Kunming mice, which received oral gavage of EEPF from 3.85 to 78.00 g/kg. Body weight, organ indexes, biochemical analysis, morphology, histopathology, oxidative stress state, TUNEL, mRNA and protein expression of NLRP3/ASC/Caspase-1/GSDMD signaling pathway were evaluated to study the EEPF-induced acute hepatotoxicity and its underlying mechanisms. The results showed that 107 compounds such as psoralen and isopsoralen were identified in EEPF. And the acute oral toxicity test demonstrated the LD50 of EEPF was 15.95 g/kg in Kunming mice. The survival mice displayed non-significant difference in body weight compared with Control at the end of the observation period. And the organ indexes of heart, liver, spleen, lung, and kidney showed no significant difference. However, the morphological and histopathological changes of these organs in high-dose-groups mice indicated that the liver and kidney might be the main target toxic organs of EEPF, which showed hepatocyte degeneration with lipid droplets and protein cast in kidney. It could be confirmed by the significant increases of liver and kidney function parameters such as AST, ALT, LDH, BUN, and Crea. In addition, the oxidative stress markers, MDA in the liver and kidney was significantly increased while SOD, CAT, GSH-Px (only liver), and GSH were significantly decreased. Furthermore, EEPF increased the TUNEL-positive cells and the mRNA and protein expression of NLRP3, Caspase-1, ASC and GSDMD in liver with increased protein expression of IL-1β and IL-18. Notably, cell viability test showed that the specific inhibitor of Caspase-1 could reverse the Hep-G2 cell death induced by EEPF. To summarize, this study analyzed the 107 compounds of EEPF. The acute oral toxicity test demonstrated the LD50 value of EEPF was 15.95 g/kg in Kunming mice and the liver and kidney might be the main target toxic organs of EEPF. It caused liver injury through oxidative stress and pyroptotic damage via NLRP3/ASC/Caspase-1/GSDMD signaling pathway. [Display omitted] •In UHPLC-HRMS analysis, 107 compounds were identified in EEPF.•In acute oral toxicity test, the LD50 value of EEPF was 15.95 g/kg in Kunming mice.•Liver and kidney might be the main target toxic organs of EEPF.•EEPF induced hepatoxicity through oxidative stress and pyroptotic damage.•Specific inhibitor of Caspase-1could reverse the Hep-G2 cell death induced by EEPF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2023.116334