Minimax Phase Error Design of IIR Digital Filters With Prescribed Magnitude and Phase Responses

Infinite impulse response (IIR) digital filters with prescribed magnitude and phase responses have been used in many applications. To approximate the prescribed magnitude and phase responses, we propose a new approach to the design of general IIR filters by minimizing the maximum phase error subject...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 60; no. 2; pp. 980 - 986
Main Authors Lai, Xiaoping, Lin, Zhiping
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2011.2175389

Cover

Loading…
More Information
Summary:Infinite impulse response (IIR) digital filters with prescribed magnitude and phase responses have been used in many applications. To approximate the prescribed magnitude and phase responses, we propose a new approach to the design of general IIR filters by minimizing the maximum phase error subject to a prescribed or simultaneously minimized maximum magnitude error, where the phase error and magnitude error are controlled by two elliptic constraints respectively with major and minor axes along the desired frequency response. The sequential constrained least-squares method and Levy-Sanathanan-Koerner strategy are used to convert the nonconvex constraints into convex ones, resulting in a series of convex optimization subproblems. Design examples and comparisons with recent methods demonstrate the flexibility and effectiveness of the proposed methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2175389