Extraction of timing error parameters from readback waveforms

In this paper, we consider the problem of modeling the timing error process in magnetic recording systems. We propose a discrete-valued Markov model for the timing error process, and design two methods (data-aided and nondata-aided), based on the Baum-Welch algorithm, to extract the model parameters...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 42; no. 2; pp. 194 - 199
Main Authors Wei Zeng, Kavcic, A., Motwani, R.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.02.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we consider the problem of modeling the timing error process in magnetic recording systems. We propose a discrete-valued Markov model for the timing error process, and design two methods (data-aided and nondata-aided), based on the Baum-Welch algorithm, to extract the model parameters from the readback waveforms. The channel model we consider is an intersymbol interference (ISI) channel with additive Gaussian noise. The continuous-time readback signal at the output of the channel is sampled at baud-rate. Simulation results show that the estimated parameters are close to the actual values and the convergence is attained in a few iterations of the Baum-Welch algorithm. We also demonstrate the usefulness of the accurate model extraction by comparing a fine-tuned Markov timing recovery loop to the standard Mueller and Muller detector with a tuned second-order loop filter.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2005.861756