Targeting autophagy by antipsychotic phenothiazines: potential drug repurposing for cancer therapy

[Display omitted] Cancer is recognized as the major cause of death worldwide and the most challenging public health issues. Tumor cells exhibit molecular adaptations and metabolic reprograming to sustain their high proliferative rate and autophagy plays a pivotal role to supply the high demand for m...

Full description

Saved in:
Bibliographic Details
Published inBiochemical pharmacology Vol. 222; p. 116075
Main Authors Lopes, Rayssa M., Souza, Ana Carolina S., Otręba, Michał, Rzepecka-Stojko, Anna, Tersariol, Ivarne L.S., Rodrigues, Tiago
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Cancer is recognized as the major cause of death worldwide and the most challenging public health issues. Tumor cells exhibit molecular adaptations and metabolic reprograming to sustain their high proliferative rate and autophagy plays a pivotal role to supply the high demand for metabolic substrates and for recycling cellular components, which has attracted the attention of the researchers. The modulation of the autophagic process sensitizes tumor cells to chemotherapy-induced cell death and reverts drug resistance. In this regard, many in vitro and in vivo studies having shown the anticancer activity of phenothiazine (PTZ) derivatives due to their potent cytotoxicity in tumor cells. Interestingly, PTZ have been used as antiemetics in antitumor chemotherapy-induced vomiting, maybe exerting a combined antitumor effect. Among the mechanisms of cytotoxicity, the modulation of autophagy by these drugs has been highlighted. Therefore, the use of PTZ derivatives can be considered as a repurposing strategy in antitumor chemotherapy. Here, we provided an overview of the effects of antipsychotic PTZ on autophagy in tumor cells, evidencing the molecular targets and discussing the underlying mechanisms. The modulation of autophagy by PTZ in tumor cells have been consistently related to their cytotoxic action. These effects depend on the derivative, their concentration, and also the type of cancer. Most data have shown the impairment of autophagic flux by PTZ, probably due to the blockade of lysosome-autophagosome fusion, but some studies have also suggested the induction of autophagy. These data highlight the therapeutic potential of targeting autophagy by PTZ in cancer chemotherapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0006-2952
1873-2968
1873-2968
DOI:10.1016/j.bcp.2024.116075