One-pot cascade deacetalization and nitroaldol condensation over acid–base bifunctional ZIF-8 catalyst
Designing an elegant cascade catalyst is one of the challenging issues in catalyst research because the different or sometimes antagonistic active sites should catalyze the reaction in a consecutive manner without any adverse effects. In particular, complex synthetic methods have been envisaged to a...
Saved in:
Published in | Research on chemical intermediates Vol. 44; no. 6; pp. 3673 - 3685 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Designing an elegant cascade catalyst is one of the challenging issues in catalyst research because the different or sometimes antagonistic active sites should catalyze the reaction in a consecutive manner without any adverse effects. In particular, complex synthetic methods have been envisaged to avoid unfavorable neutralization between acid and base sites in the preparation of acid–base bifunctional catalysts. In this work, acid–base bifunctional catalytic activity of ZIF-8 was evaluated for one-pot cascade deacetalization and nitroaldol condensation, and the reaction performance was compared with those of other metal–organic framework (MOF) catalysts. Although MOFs bearing strong Lewis acid sites on their metal nodes efficiently promoted the first deacetalization step, they were either totally ineffective (Cu-BTC, Fe-BTC, and MIL-53) or unsatisfactory (MIL-101 and UiO-66) to produce final product in the second base-catalyzed reaction step. On the other hand, ZIF-8 was more efficient at catalyzing the second nitroaldol condensation step, and the selectivity of the final product was substantially improved to as high as 56.4%. The enhanced selectivity clearly demonstrates the promising potential of ZIF-8 as a site-isolated acid–base bifunctional catalyst. However, the gradual catalyst deactivation, resulting from weakening of both acid and base sites during a reaction revealed by characterization of used catalyst, should be improved to extend its use to other versatile cascade or tandem reactions. |
---|---|
ISSN: | 0922-6168 1568-5675 |
DOI: | 10.1007/s11164-018-3374-4 |