Hyperoside protects rat ovarian granulosa cells against hydrogen peroxide-induced injury by sonic hedgehog signaling pathway
Sustained exogenous stimuli induce oxidative stress in granulosa cells and cause cell apoptosis, thereby resulting in follicular atresia. Hyperoside is a natural flavonoid that possesses anti-oxidant activity. The present study aimed to evaluate the effect of hyperoside on hydrogen peroxide (H2O2)-i...
Saved in:
Published in | Chemico-biological interactions Vol. 310; p. 108759 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Sustained exogenous stimuli induce oxidative stress in granulosa cells and cause cell apoptosis, thereby resulting in follicular atresia. Hyperoside is a natural flavonoid that possesses anti-oxidant activity. The present study aimed to evaluate the effect of hyperoside on hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in granulosa cells. Cell viability was measured using MTT assay. The malondialdehyde (MDA) level and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) were detected to reflect the oxidative stress. Flow cytometry was performed to measure the apoptotic rate. Western blot was carried out to determine the expression of Bcl-2, Bax, Sonic hedgehog (SHH), Gli1, and smoothened (SMO). The mRNA levels of SHH, Gli1, and SMO were analyzed using qRT-PCR. We found that hyperoside improved cell viability in H2O2-stimulated granulosa cells. The increased MDA level and decreased activities of SOD, GSH-Px, and CAT caused by H2O2 stimulation were reversed by hyperoside treatment. The apoptotic rate of H2O2-stimulated granulosa cells was reduced after treatment with hyperoside. Hyperoside treatment caused a decrease in Bax expression and an increase in Bcl-2 expression in H2O2-stimulated granulosa cells. The mRNA and protein levels of SHH, Gli1, and SMO in H2O2-stimulated granulosa cells were elevated by hyperoside treatment. Suppression of SHH pathway by cyclopamine attenuated the protective effects of hyperoside on H2O2-induced injury. In short, hyperoside protected granulosa cells from H2O2-induced cell apoptosis and oxidative stress via activation of the SHH signaling pathway.
•Hyperoside inhibited H2O2-induced viability reduction in granulosa cells.•Hyperoside relieved H2O2-induced oxidative stress.•Hyperoside attenuated H2O2-induced apoptosis of granulosa cells.•Hyperoside promoted H2O2-induced activation of SHH pathway. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0009-2797 1872-7786 |
DOI: | 10.1016/j.cbi.2019.108759 |