Spectral Analysis of Relativistic Dyadic Green's Function of a Moving Dielectric-Magnetic Medium
The present contribution is concerned with obtaining plane-wave spectral representations of the relativistic electric and magnetic dyadic Green's functions of an isotropic dielectric-magnetic medium (at the frame-at-rest) that is moving in a uniform velocity. By applying a simple coordinate tra...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 59; no. 8; pp. 2973 - 2979 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.08.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The present contribution is concerned with obtaining plane-wave spectral representations of the relativistic electric and magnetic dyadic Green's functions of an isotropic dielectric-magnetic medium (at the frame-at-rest) that is moving in a uniform velocity. By applying a simple coordinate transformation, scalarization of the EM vectorial problem is obtained in which the EM dyads are evaluated from Helmholtz's isotropic scalar Green's function. The spectral plane-wave representations of the dyadic Green's functions are obtained by applying the spatial 2D Fourier transform to the scalar Green's function. We investigate these spectral representations in the under and over phase-speed regimes, as well as 2D and 3D formulations and discuss the associated wave phenomena. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2011.2158972 |