Discrete Abstractions of Nonlinear Systems Based on Error Propagation Analysis
This paper proposes a computational method for the feasibility check and design of discrete abstract models of nonlinear dynamical systems. First, it is shown that a given discrete-time dynamical system can be transformed into a finite automaton by embedding a quantizer into its state equation. Unde...
Saved in:
Published in | IEEE transactions on automatic control Vol. 57; no. 3; pp. 550 - 564 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.03.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper proposes a computational method for the feasibility check and design of discrete abstract models of nonlinear dynamical systems. First, it is shown that a given discrete-time dynamical system can be transformed into a finite automaton by embedding a quantizer into its state equation. Under this setting, a sufficient condition for approximate bisimulation in infinite steps of time between the concrete model and its discrete abstract model is derived. The condition takes the form of a set of linear inequalities and thus can be checked efficiently by a linear programming solver. Finally, the iterative refinement algorithm, which generates a discrete abstract model under a given error specification, is proposed. The algorithm is guaranteed to terminate in finite iterations. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2011.2161789 |