Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PPARδ signaling pathway

[Display omitted] High glucose-induced endothelial dysfunction is a critical initiating factor in the development of diabetic vascular complications. Omentin-1 has been regarded as a novel biomarker of endothelial function in subjects with type-2 diabetes (T2D); however, it is unclear whether omenti...

Full description

Saved in:
Bibliographic Details
Published inBiochemical pharmacology Vol. 174; p. 113830
Main Authors Liu, Fang, Fang, Shaohong, Liu, Xinxin, Li, Ji, Wang, Xuedong, Cui, Jinjin, Chen, Tao, Li, Zhaoying, Yang, Fan, Tian, Jiangtian, Li, Hulun, Yin, Li, Yu, Bo
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] High glucose-induced endothelial dysfunction is a critical initiating factor in the development of diabetic vascular complications. Omentin-1 has been regarded as a novel biomarker of endothelial function in subjects with type-2 diabetes (T2D); however, it is unclear whether omentin-1 has any direct effect in ameliorating high glucose-induced endothelial dysfunction. In the present study, we analyzed the effect of omentin-1 on high glucose-induced endothelial dysfunction in isolated mouse aortas and mouse aortic endothelial cells (MAECs). Vascular reactivity in aortas was measured using wire myography. The expression levels of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), Akt, endothelial nitric-oxide synthase (eNOS), and endoplasmic reticulum (ER)-stress markers in MAECs were determined by Western blotting. The production of reactive oxygen species (ROS) and nitric oxide (NO) was assessed by diluted fluoroprobe, 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) and 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM DA), respectively. We found that ex vivo treatment with omentin-1 reversed impaired endothelial-dependent relaxations (EDR) in mouse aortas after high-glucose insult. Elevated ER-stress markers, oxidative stress, and reduction of NO production induced by high glucose in MAECs were reversed by omentin-1 treatment. Omentin-1 also effectively reversed tunicamycin-induced ER stress responses in MAECs, as well as ameliorated impairment of endothelial-dependent relaxation in mouse aortas. Moreover, omentin-1 increased AMPK phosphorylation with a subsequent increase in PPARδ expression, while also restoring the decreased phosphorylation of Akt and eNOS. The effects of omentin-1 were abolished by cotreatment of compound C (AMPK inhibitor) and GSK0660 (PPARδ antagonist). These data indicate that omentin-1 protects against high glucose-induced vascular-endothelial dysfunction through inhibiting ER stress and oxidative stress and increasing NO production via activation of AMPK/PPARδ pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-2952
1873-2968
1873-2968
DOI:10.1016/j.bcp.2020.113830