Spin Filter of Graphene Nanoribbon Based Structure

Spin-dependent transport properties of the zigzag graphene nano-ribbon (zGNR) based structure Al-zGNR-Al are investigated by ab initio technique where density functional calculation is carried out within the Keldysh non-equilibrium Green's function formalism. The energy band structure of the infinit...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 27; no. 8; pp. 176 - 179
Main Author 万浪辉 余陨金 王斌
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.08.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spin-dependent transport properties of the zigzag graphene nano-ribbon (zGNR) based structure Al-zGNR-Al are investigated by ab initio technique where density functional calculation is carried out within the Keldysh non-equilibrium Green's function formalism. The energy band structure of the infinite zigzag ribbon is sensitive to the dangling bonds of carbon atoms on both edge sides. For the three-circle-width zigzag ribbon with one edge monohydrogenated and the other edge dihydrogenated (zGNR(H-H2)), strongly spin-polarized energy bands are found. A spin-down branch is obtained just below the Fermi level while a spin up band appears above it. For the structure Al-zGNR(H-H2)-Al, where three-circle-width and seven-circle-length (3 × 7) zGNR(H-H2) is coupled by two (100) aluminium electrodes, an obvious spin filter property is found as the bias voltage changes. When the length of the sandwiched zGNR(H-H2) ribbon increaes, the spin-up current is strongly restrained especially under higher bias voltage.
Bibliography:11-1959/O4
TM27
O471.1
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/27/8/087205