A Customizable Automotive Steering System With a Haptic Feedback Control Strategy for Obstacle Avoidance Notification

Increased global use of motorized vehicles has led to a higher number of automotive crashes involving human injuries and fatalities. Greater driver awareness through haptic feedback can provide vital information from the vehicle and surroundings to the driver while minimizing driver distraction. In...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 60; no. 9; pp. 4208 - 4216
Main Authors Jensen, M. J., Tolbert, A. M., Wagner, J. R., Switzer, Fred S., Finn, J. W.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Increased global use of motorized vehicles has led to a higher number of automotive crashes involving human injuries and fatalities. Greater driver awareness through haptic feedback can provide vital information from the vehicle and surroundings to the driver while minimizing driver distraction. In this paper, steering wheel haptic feedback will be provided to increase the drivers' knowledge of the roadway and driving conditions. This increased knowledge should enable the driver to avoid obstacles presented in the roadway earlier than without any feedback. A high-fidelity customizable driving simulator was utilized to provide nine different levels of sinusoidal haptic feedback via the steering wheel. Mathematical models for the vehicle steering system, with adjustable controller gains, were developed to create torsional feedback. The testing included 25 human subjects ranging in age and driving experience. Driver preferences for feedback amplitude and frequency were gathered, whereas driver/vehicle performance was used as the measure of feedback effectiveness. The laboratory results demonstrate that haptic steering feedback improved driver performance as measured by a 62% reduction in obstacle hit rates, small reductions in peak steering wheel angle and peak vehicle yaw rate, as well as a nearly 10 m (32.8 ft) increase in reaction distance to the obstacles. The research contribution is the successful application of an advanced steering simulator with a steering control strategy to introduce supplemental haptic feedback to the driver through the steering system for roadway avoidance notification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2011.2172472