Chip Formation of Rounded Cutting Edges

In cutting processes, the performance and tool life of cutting tools are important evaluation criterions. The cutting edge microgeometry of the tools is in direct contact with the workpiece and thus influences the material flow and the loads on the cutting wedge. Research to date has demonstrated th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of precision engineering and manufacturing Vol. 20; no. 1; pp. 37 - 44
Main Authors Bergmann, B., Denkena, B., Grove, T., Picker, T.
Format Journal Article
LanguageEnglish
Published Seoul Korean Society for Precision Engineering 01.01.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In cutting processes, the performance and tool life of cutting tools are important evaluation criterions. The cutting edge microgeometry of the tools is in direct contact with the workpiece and thus influences the material flow and the loads on the cutting wedge. Research to date has demonstrated the potential of rounded cutting edges and their improved wear behavior. However, the investigations were always limited to a certain number of materials or processes. For a process-specific design of the cutting edge microgeometry, it must be possible to explicitly describe the material- and process-related contact conditions during machining with rounded cutting edges. Hence, the following article analyzes the chip formation of different cutting edge microgeometries during machining in continuous and interrupted cutting. For this purpose, planing tests on non-ferrous and ferrous materials as well as milling tests on steel alloys with differently rounded cutting tools are carried out and the effects on the chip formation process are analyzed. The results show that the minimum uncut chip thickness h min correlates linearly to the cutting edge rounding. In addition, the correlation obtained is independent of the cutting process and the workpiece material.
ISSN:2234-7593
2005-4602
DOI:10.1007/s12541-019-00020-4